

PROVINCIA AUTONOMA DI TRENTO

COMUNE DI BORGO D'ANAUNIA

Committente

FAE GROUP S.P.A.
ZONA PRODUTTIVA, 18
38013 BORGO D'ANAUNIA -TN-

Elaborato

ELABORATI DI VARIANTE AL PIANO REGOLATORE GENERALE:
RELAZIONE GEOTECNICA

ai sensi delle Norme Tecniche per le Costruzioni D.M. 17 gennaio 2018

Progetto Definitivo VARIANTE N.9 AL PIANO ATTUATIVO AI FINI SPECIALI PIP3

VARIANTE DI LOTTIZZAZIONE COMPARTI B e C – PIP3

E LOTTI FAE GROUP - PIP1

ZONA PRODUTTIVA A FONDO COMUNE DI BORGO D'ANAUNIA

Progettazione architettonica e strutturale

Studio d'ingegneria Dott. Ing. Francesco Asson

Timbro e firma per presa visione

Timbro e firma per presa visione

Data Marzo 2022

Via Castello Mori 2/A,

38011 Sarnonico (TN)

Cell. +39 348 3121340

Tel. 0463 832777

 ${\it Email:} in fo@studiogeoabram.com$

PEC: studio.gabram@geotaspec.it

P. IVA: 02390680227

il Geologo Dott. Geol. Gianluca Abram

Codice doc

22_301_geot

Questo documento è proprietà intellettuale di STUDIO GEOLOGIA ABRAM. Tutti i diritti sono riservati a termine di legge, è vietata la riproduzione e la divulgazione.

SOMMARIO

1.	PREMESSA	1
2.	NORMATIVA DI RIFERIMENTO	1
3.		
	3.1. SONDAGGI MECCANICI ESISTENTI	2
4.	MODELLO GEOTECNICO DEL SOTTOSUOLO	3
5.	VERIFICHE GEOTECNICHE	7
!	5.1. PARAMETRI DI PROGETTO	8 9 13 14 15
6.	INDICAZIONI GEO-ESECUTIVE	20
(6.1. PROCEDURA DI INSTALLAZIONE TERRA ARMATA	21
7.	CONCLUSIONI	22

ALLEGATI

- 01 TABULATI VERIFICHE GEOTECNICHE
- 02 VERIFICHE DI STABILITA' GLOBALE

IL PRESENTE ELABORATO È REDATTO IN OTTEMPERANZA AI CONTENUTI DEL D.M. 17 GENNAIO 2018 "NORME TECNICHE PER LE COSTRUZIONI" E SODDISFA I REQUISITI NORMATIVI ED URBANISTICI DI RILEVANZA GEOTECNICA PER CUI COSTITUISCE DOCUMENTO PROGETTUALE IDONEO PER IL RILASCIO DELLA CONCESSIONE AD EDIFICARE. ÎN CORSO D'OPERA SI DOVRÀ CONTROLLARE LA RISPONDENZA TRA IL MODELLO GEOTECNICO DI RIFERIMENTO ASSUNTO IN PROGETTO E LA SITUAZIONE EFFETTIVA.

1. PREMESSA

Per la stesura del presente documento si fa esplicito richiamo alla Relazione geologica (Cod. doc. int. 22_301_geol) elaborata dal sottoscritto su incarico di Studio d'ingegneria Dott. Ing. Francesco Asson e per conto della Società FAE Group S.p.a. Il presente studio geotecnico viene redatto in ottemperanza alle NTC2018, a supporto del progetto di richiesta cambio coltura con modellazione del terreno delle PP.FF. 3505/1, 3505/2, 1869/2, 1958/5, 1880/4, 1880/5, 1878/1, 1878/2, 1879, 3504, 1877, 1875, 1874, 3503/1 e 245/2 in C.C. FONDO.

L'intervento in programma prevede la trasformazione di coltura di un'area boscata di superficie circa 6.437,00 mq al fine di ottenere un'area piana da destinare a parcheggi nell'ambito del futuro ampliamento di FAE, previsto in adiacenza al sito in esame. Per realizzare il parcheggio scoperto si rende necessario un importante intervento di modellazione del terreno mediante la realizzazione di terre armate e il riporto di un significativo volume di terreno.

La terra armata di progetto ha un'altezza massima di 30 metri ed è realizzata con gradoni di altezza pari a 10 metri ciascuno; lo sviluppo orizzontale complessivo dell'opera in terra è di circa ml. 60. Il piano di imposta dell'opera in terra sarà posto lungo il fondovalle ad una quota di circa 966-967 m.s.l.m., pertanto il piede della terra armata sarà incassato nel terreno per almeno circa metri 2,50. L'intervento previsto consentirà di ottenere un parcheggio adibito a 71 posti auto, andando così a soddisfare i requisiti richiesi con la realizzazione dell'ampliamento della FAE GROUP S.p.A..

La conoscenza dei luoghi e i dati raccolti risultano essere adeguati e sufficienti per l'esecuzione degli interventi in progetto, in relazione anche delle informazioni geologiche e geotecniche reperite dalle indagini sismiche e geognostiche svolte nell'area di progetto o nei suoi immediati d'intorni. Per questo motivo non sono state eseguite specifiche indagini geotecniche. Sarà comunque necessario, in fase esecutiva e osservando direttamente gli scavi, verificare che il modello ipotizzato corrisponda alla situazione reale.

2. NORMATIVA DI RIFERIMENTO

- Decreto Ministeriale del 17 gennaio 2018, "Aggiornamento Norme Tecniche per le Costruzioni".
- Circolare del MIT 21 gennaio 2019, n. 7, del Consiglio superiore del Lavori Pubblici, recante "Istruzioni per l'applicazione dell'«Aggiornamento delle Norme tecniche per le costruzioni»".
- UNI EN 1997-1:2005 "Eurocodice 7 Progettazione geotecnica".
- UNI EN 1998-1:2005 "Eurocodice 8 Progettazione delle strutture per la resistenza sismica
 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- Decreto Min. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, ed i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Circolare Min. LL.PP. 24 Settembre 1988, n. 30483 "Istruzioni attinenti alle Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione" di cui al D.M. 11 Marzo 1988".

3. INDAGINI GEOGNOSTICHE

3.1. SONDAGGI MECCANICI ESISTENTI

In prossimità dell'area di progetto (ca. 100 metri a sud-ovest) è stato eseguito in passato, a supporto della realizzazione di un edificio, un sondaggio geognostici con esecuzione di prove SPT all'interno dello stesso deposito fluvioglaciale che interessa il sito in esame.

Viene riassunta di seguito l'indagine geognostica svolta e le informazioni da essa ricavabili. I dati sono stati reperiti grazie al webGIS della Provincia di Trento, dalla banca dati sondaggi del Trentino. Nella carta geologica riportata nella Relazione geologica è indicata l'ubicazione esatta del sondaggio e in Allegato 2 della medesima è riportata la stratigrafia di dettaglio con le risultanze delle prove S.P.T..

Sondaggio geognostico esistente							
ID Lavoro	ID sondaggio	Quota p.c. (m slm)	Data esecuzione	Profondità max (m da p.c.)	Profondità Bedrock	Profondità falda (m da p.c.)	
1070	3325	1009	23.01.1998	15.0	-	10.9	

3.2. PROVE S.P.T.

Le prove S.P.T. permettono di ottenere una valutazione di massima dei parametri geotecnici del sottosuolo attraverso correlazioni empiriche, proposte da vari Autori e elencate di seguito, con il valore di N_{SPT}.

a) Addensamento dei terreni (Dr %)

La densità relativa dei terreni è valutata sulla base delle correlazioni proposte da Gibbs - Holz e da Bazaraa & Peck.

b) Resistenza al taglio (φ')

Per i terreni non coesivi l'angolo di attrito interno è calcolato come il valore più significativo tra quelli ottenibili con i seguenti metodi:

$$-\phi = \sqrt{15 \times N_{SPT}} + 15 \qquad \qquad \text{(Road Bridge Specification)} \\ -\phi = 28 + 0.28N_{SPT} \qquad \qquad \text{Sowers (1961)} \\ -\phi = 29.47 + 0.46N_{spt} - 0.004N_{spt^2} \ (<5\% \ di \ limo) \qquad \qquad \text{Meyerhof (1965)} \\ -\phi = 23.7 + 0.57N_{spt} - 0.006N_{spt^2} \ \ (>5\% \ di \ limo) \qquad \qquad \text{Meyerhof (1965)} \\ -\phi = 38 + 0.08 \ Dr \qquad \qquad \qquad \text{Schmertmann (1978)} \\ -\phi = 19 - 0.38\sigma + 8.73Log(N_{spt}) \qquad \qquad \text{De Mello (1971)} \\ -\phi = \sqrt{20N_{SPT}} + 15 \qquad \qquad \text{Owasaki & Iwasaki} \\ -\phi = 27.2 + 0.28N_{SPT} \qquad \qquad \text{Peck-Hanson & Thornburn}$$

c) Modulo di Elasticità (E)

Il modulo elastico dei terreni in esame è stato valutato utilizzando le correlazioni valide per terreni sabbioso e/o limosi, sopra e sotto falda, proposte da J.E. Bowles (Foundation Analysis and Design; 1988 - 1991; Mc Grow - Hill Ed.), D'Apollonia et al., Tornaghi et al, Jambu, Schultze&Menzebach, Schmertmann, ed infine Jamiolkowski.

3.2.1. Risultati prove SPT

Nella Tabella a seguire sono indicati i valori di N_{SPT} ottenuti in sito, i valori di N_{SPT} corretti N1(60) con i fattori di correzione (litostatica, rendimento del sistema d'infissione, diametro di perforazione, lunghezza aste) ed i parametri geotecnici da essi ricavabili.

Sondaggio	Profondità	N ₁	N ₂	N ₃	N _{SPT}	N1(60)	D _R	φ	Е
(ID.)	(m da p.c.)				<u> </u>		(%)	(°)	(MPa)
	1,50 – 1,95	5	4	5	9	11	44	34	25
	3,00 – 3,45	11	10	14	24	29	61	39	37
0005	4,50 – 4,95	13	18	17	30	39	67	41	46
3325	6,00 – 6,45	12	18	20	38	39	68	44	49
	7,50 – 7,95	16	24	22	46	44	73	44	56
	9,00 – 9,45	15	26	28	54	47	77	45	63

I valori delle prove SPT mostrano che si tratta di terreni definiti da buone caratteristiche meccaniche e da uno stato di addensamento mediocre nei primi metri, per divenire denso in profondità (a conferma di quanto osservato dai risultati delle indagini sismiche esposte in Relazione geologica, Allegato 3)

4. MODELLO GEOTECNICO DEL SOTTOSUOLO

Ai fini dell'analisi quantitativa di uno specifico problema, per modello geotecnico di sottosuolo si intende uno schema rappresentativo del volume significativo di terreno, suddiviso in unità omogenee sotto il profilo fisico-meccanico, che devono essere caratterizzate con riferimento allo specifico problema geotecnico. Nel modello geotecnico di sottosuolo devono essere definiti i valori caratteristici dei parametri geotecnici e l'eventuale regime delle pressioni interstiziali.

Sulla base di quanto appreso nel corso del rilevamento geologico-geotecnico di superficie e dalle indagini svolte nei d'intorni, è possibile affermare che l'opera in esame andrà a gravare prevalentemente su substrato roccioso e, solo in modesta parte, su deposito sciolto.

Si riporta di seguito una breve descrizione delle Unità geotecniche interessate dall'intervento, nonché le principali caratteristiche meccaniche che la definiscono.

→ Unità geotecnica A (da p.c. a max 10.0 ÷ 15.0 m)

Dall'attuale piano campagna sino ad una profondità massima di 15 metri, è presente un livello sciolto da poco a ben addensato, costituito da livelli sabbiosi con ghiaia, debolmente limosi. La componente limosa tende ad aumentare con la profondità.

La potenza massima del deposito si rileva alle quote maggiori (in corrispondenza della testata della vallecola oggetto d'intervento) mentre, proseguendo verso valle, lo spessore diminuisce rapidamente fino a raggiungere valori pellicolari lungo i fianchi della valle per ri-incrementare lungo il fondovalle (spessore massimo 8.0 metri).

In rapporto a quanto osservato dalle indagini sismiche e in base alla quota d'imposta della terra rinforzata di progetto, lo spessore massimo previsto al di sotto del piano di posa dell'opera, è variabile da 2.0 metri (lato di monte) a 6.0 metri circa (lato di valle).

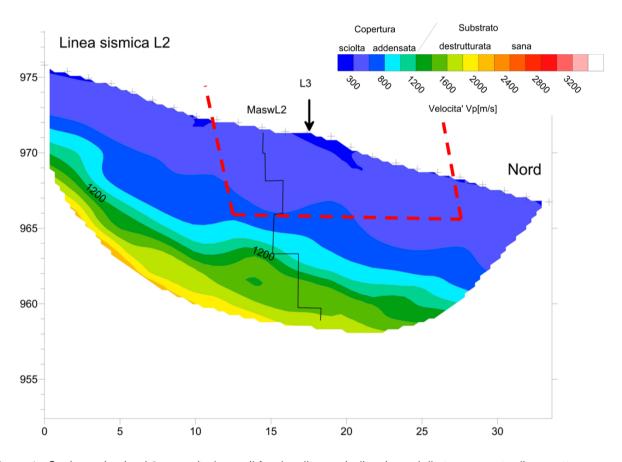


Figura 1 - Sezione sismica L2 eseguita lungo il fondovalle con indicazione delle terra armata di progetto (tratteggio rosso).

Il modello analitico adottato per definire il comportamento meccanico di questa unità geotecnica è quello di un mezzo continuo, con legame costitutivo elasto-plastico ideale e criterio di rottura di Mohr-Coulomb.

Sulla base delle indagini geognostiche/prove SPT eseguite sugli stessi terreni nell'ambito di precedenti studi e tenendo conto di quanto riportato in letteratura, a questa unità è possibile assegnare i seguenti valori ai parametri geotecnici riportanti in tabella:

Deposito sciolto – Unità A						
Densità naturale del terreno (γ _n)	1800÷1900 kg/m³					
Densità del terreno saturo (γs)	2000÷2100	O kg/m³				
Angolo di attrito (φ)	32÷38°					
Coesione drenata (c')	0,0÷0,05 kg/cm ²	0÷5 kPa				
Coesione apparente (Cu)	0,03÷0.08 kg/cm ²	3÷8 kPa				
Modulo elastico (E')	250÷600 kg/cm ²	25÷60 MPa				

→ Unità S (da 0.0 ÷ 15.0 m da p.c. → in approfondimento)

Sottostante al deposito sciolto è presente il substrato roccioso dolomitico appartenente alla Dolomia Principale. Dagli affioramenti rocciosi rilevati nei d'intorni dell'area, è possibile affermare che l'ammasso roccioso è da moderatamente a mediamente fratturato; a favore di sicurezza nelle verifiche geotecniche di seguito esposte è stato considerato unicamente il litoide alterato, definito dalle caratteristiche geomeccaniche più scadenti. A questo è attribuibile un valore di GSI (Geological Strength Index) pari a 45±5.

Il modello analitico adottato per definire il comportamento meccanico del substrato roccioso è quello di un mezzo continuo, con legame costitutivo elasto-plastico e criterio di rottura di Mohr–Coulomb.

Per la determinazione di tali parametri di resistenza si è fatto ricorso alle formule di Hoek e Brown (2002) che esprimono, nel piano degli sforzi principali, il criterio di rottura dell'ammasso roccioso in funzione dei parametri di resistenza della roccia intatta e dell'indice di classificazione dell'ammasso roccioso GSI (Geological Strength Index). Successivamente, i parametri di resistenza caratteristici dell'ammasso secondo il criterio di Mohr-Coulomb, sono stati ricavati operando una linearizzazione del criterio di Hoek e Brown tenendo conto dello stato di sforzo in sito.

Nel dettaglio, al fine di determinare lo sforzo orizzontale σ_H agente sulle fondazioni, è stato ipotizzato a favore di sicurezza un coefficiente di Poisson della roccia ν pari a 0.32 e determinato il coefficiente di spinta a riposo k_0 simulando di essere in campo elastico, con la seguente espressione:

$$k_0 = \frac{v}{(1 - v)}$$

Determinato il coefficiente k_0 è stato calcolato lo sforzo orizzontale σ_H prevedendo un carico di progetto agente sulle fondazioni pari a 0.54 Mpa (5.5 kg/cmq); lo sforzo orizzontale è indispensabile per determinare lo stato di sforzo in sito e quindi ottenere dei parametri geotecnici più verosimili possibile in funziona anche alle condizioni al contorno (carichi di progetto).

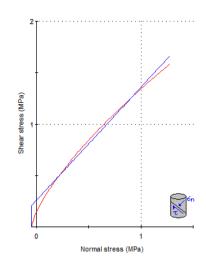
Sulla base delle informazioni esistenti e dalle indicazioni riportate in letteratura, sono stati ricavati i parametri geotecnici/geomeccanici del substrato roccioso con l'ausilio del programma "RocLab" (Rocscience); i parametri geotecnici ricavati ipotizzando a favore di sicurezza un fattore disturbo pari a 0.7, sono riportati nel grafico e nella tabella che segue:

Hoek-Brown Classification

intact uniaxial compressive strength = 100 MPa GSI = 40 mi = 9 Disturbance factor = 0.7

Hoek-Brown Criterion

mb = 0.333 s = 0.0002 a = 0.511


Mohr-Coulomb Fit

cohesion = 0.261 MPa friction angle = 47.63 deg

Rock Mass Parameters

tensile strength = -0.050 MPa uniaxial compressive strength = 1.172 MPa global strength = 7.275 MPa

modulus of deformation = 3655.22 MPa

Substrato roccioso						
Peso di volume	γ	(kN/mq)	24			
Geological Strength Index	GSI	-	40			
Resistenza a compr. uniassiale (roccia intatta)	σci	(MPa)	100			
Angolo di attrito (Secondo criterio di Mohr Coulomb)	ф	0	47			
Coesione (Secondo criterio di Mohr Coulomb)	С	MPa	0.261			
Resistenza a compr. uniassiale (ammasso roccioso)	σ_{cm}	(MPa)	7.275			
Modulo di deformazione ammasso roccioso	Erm	(GPa)	3 65			
(Secondo criterio di Hoek e Brown)	∟rm	(GFa)	5.05			

Nel complesso, ai fini geotecnico-fondazionali e di stabilità, la roccia dolomitica presenta mediocribuone caratteristiche fisico-meccaniche.

→ Unità geotecnica R – materiale di riporto (dal futuro p.c. a max ~ 30.0 m)

Il livellamento generale dell'area sarà ottenuto mediante la stesura di materiale di riporto granulare calcareo. Per il riempimento si dovrà utilizzare del materiale con tessitura complessivamente granulare, il quale dovrà essere adeguatamente steso in strati di spessore omogeneo non superiore a 0.30 m e progressivamente compattato tramite passaggi ripetuti di rulli compattatori di adeguato peso. In prossimità della facciata della terra armata, per la profondità di circa 1.00 m, la compattazione dovrà essere eseguita mediante vibro-costipatori o piastre vibranti. Il materiale dovrà essere compattato fino ad ottenere una costipazione non inferiore al 95% dello Standard Proctor.

Potrà essere utilizzato anche il terreno e il substrato roccioso derivante dagli sterri di progetto; tale materiale dovrà avere caratteristiche geotecniche adeguate ad essere impiegato come rilevato, consultando il geologo fin dalle prime fasi esecutive. Eventualmente la granulometria del materiale di riporto può essere leggermente corretta mediante l'aggiunta di frazioni grossolane, fino a ottenere un fuso granulometrico ottimale per la formazione del riempimento/terra armata.

Il modello analitico adottato per definire il comportamento meccanico di questa unità geotecnica è quello di un mezzo continuo, con legame costitutivo elasto-plastico ideale e criterio di rottura di Mohr-Coulomb.

Al terreno di riporto con cui saranno formati i rilevati sono attribuiti i seguenti parametri geotecnici medi:

Densità naturale del terreno (γ _n)	1700÷1850 kg/m³		
Densità del terreno saturo (γ _s)	1800÷2000 kg/m ³		
Angolo di attrito (φ)	34÷36°		
Coesione drenata (c') (dovuta alla compattazione e alla presenza di matrice limosa)	0.02 kg/cm ²	2 kPa	
Modulo elastico (E')	500÷800 kg/cm ²	50÷80 MPa	

La tabella di seguito riassume il <u>Modello Geotecnico di Riferimento</u> e i principali <u>valori caratteristici</u> (X_k) che il progettista della terra armata potrà assumere come riferimento.

Unità	Profondità	Peso di volume naturale	Angolo di attrito	Coesione drenata	Coesione apparente	Modulo Elastico
geot.	H (m da p.c.)	γ _{n k} (kN/m³)	ф'к (°)	C' _k (kPa)	C _{a k} (kPa)	E (MPa)
A	0.0 → 2.0÷15.0	18.5	32	2	5	350
S	0.0÷15.0 → in approfondimento	24.0	47	261	261	3650
R	0.0 → 30.0	18.0	34	2	4	350

5. VERIFICHE GEOTECNICHE

Nei successivi paragrafi vengono effettuate, per fondazioni continue, preliminari verifiche geotecniche GEO di tipo pseudostatico, relative agli SLU (rottura del terreno e scorrimento sul piano di posa) e agli SLE (cedimenti), come previsto dal D.M. 17 gennaio 2018.

In riferimento alle verifiche qui riportate si sottolinea che queste sono valide per le tipologie, per i carichi e per gli eventuali momenti ipotizzati; nel caso di condizioni differenti queste verifiche non sono da ritenersi valide, queste saranno da riverificare, così come sarà eventualmente da rivalutare il volume significativo di terreno. Tale controllo deve essere a cura della Direzione Lavori e del progettista statico.

Dal punto di vista idrogeologico dovrà essere considerata l'impostazione di drenaggi adeguati in grado di raccogliere e deviare in modo controllato tutte le acque sotterranee e superficiali.

Sulle base dei dati esistenti si ritiene che l'opera di progetto è impostata parzialmente su un modesto spessore (variabile da 2.0 a 6.0 metri circa) di substrato sciolto appartenente all'unità geotecnica "A", mentre per la restante parte grava su substrato roccioso. A favore di sicurezza le analisi di seguito esposte sono state svolte considerando uno spessore di terreno pari a 6.0 metri.

Si ribadisce nuovamente che in fase esecutiva saranno da controllare e verificare tutti i dati della presente relazione e la relativa congruenza con la situazione reale in sito. Nel caso si riscontrassero disomogeneità e incongruenze rispetto a quanto indicato nella presente relazione, queste dovranno essere comunicate tempestivamente al progettista della struttura e alla Direzione Lavori.

5.1. PARAMETRI DI PROGETTO

Il valore dei parametri di progetto (Xd) da adottare nei calcoli sono stati ottenuti, secondo quanto previsto dal D.M. 17.01.2018, dividendo i valori caratteristici (Xk) per un coefficiente riduttivo parziale indicato nelle specifiche Tabelle riportate di seguito:

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{\text{F}} \ (\text{o} \ \gamma_{\text{E}})$	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	Υ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an oldsymbol{arphi}'_k$	γ _φ ′	1,0	1,25
Coesione efficace	c' _k	γď	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 7.11.II - Coefficienti parziali γ_R per le verifiche degli stati limite (SLV) delle fondazioni superficiali con azioni sismiche

Verifica	Coefficiente parziale γ_R
Carico limite	2.3
Scorrimento	1.1
Resistenza sulle superfici laterali	1.3

5.2. VERIFICA AGLI STATI LIMITE ULTIMI GEO

Gli stati limite ultimi per sviluppo di meccanismi di collasso determinati dal raggiungimento della resistenza del terreno interagente con le fondazioni (GEO) riguardano:

- collasso per carico limite nei terreni di fondazione;
- scorrimento sul piano di posa.

In tali verifiche, tutte le azioni su un elemento di fondazione possono essere ricondotte a una forza risultante applicata al piano di posa.

Per le verifiche agli stati limite ultimi di tipo geotecnico (GEO) per carico limite e per scorrimento si deve fare riferimento all'Approccio 2. L'analisi deve essere condotta con la Combinazione (A1+M1+R3), nella quale i coefficienti parziali sui parametri di resistenza del terreno (M1) sono unitari,

i coefficienti parziali sulle azioni (A1) sono indicati dalla Tabella 6.2.I e la resistenza globale del sistema è ridotta tramite i coefficienti γ_R del gruppo R3 riportati in Tab. 7.11.II.

Stato Limite Ultimo (SLV) per carico limite (§ 7.11.5.3.1 – NTC18) :

Nella suddetta analisi le azioni in gioco derivano dall'analisi della struttura in elevazione come specificato al § 7.2.5 delle Norme tecniche. Le resistenze sono i corrispondenti valori limite che producono il collasso del complesso fondazione-terreno; esse sono valutabili mediante l'estensione di procedure classiche al caso di azione sismica, tenendo conto dell'effetto dell'inclinazione e dell'eccentricità delle azioni in fondazione.

Il corrispondente valore di progetto si ottiene applicando il coefficiente γ_R di Tabella 7.11.II. <u>Se, nel calcolo del carico limite, si considera esplicitamente l'effetto delle azioni inerziali sul volume di terreno significativo</u> (e.g. Richards et al., Paolucci e Pecker), il coefficiente γ_R può essere ridotto a 1.8.

Stato Limite Ultimo (SLV) per scorrimento sul piano di posa (§ 7.11.5.3.1 – NTC18) :

Relativamente alla verifica di scorrimento per azione si intende il valore della forza agente parallelamente al piano di scorrimento, per resistenza si intende la risultante delle tensioni tangenziali limite sullo stesso piano, sommata, in casi particolari, alla risultante delle tensioni limite agenti sulle superfici laterali della fondazione.

Specificamente, si può tener conto della resistenza lungo le superfici laterali nel caso di contatto diretto fondazione-terreno in scavi a sezione obbligata o di contatto diretto fondazione-calcestruzzo o fondazione-acciaio in scavi sostenuti da paratie o palancole. In tali casi, il progettista deve indicare l'aliquota della resistenza lungo le superfici laterali che intende portare in conto, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e ai criteri costruttivi dell'opera. Ai fini della verifica allo scorrimento, si può considerare la resistenza passiva solo nel caso di effettiva permanenza di tale contributo, portando in conto un'aliquota non superiore al 50%.

Nello specifico caso, per quanto riguarda la verifica agli stati limite ultimi (SLU) relativi allo scorrimento sul piano di posa è da segnalare che queste non sono state eseguite in quanto non è ancora nota la geometria esatta delle fondazioni/piano di posa. In fase di progetto esecutivo dovrà essere eseguita la verifica allo scorrimento.

5.2.1. Verifica capacità portante deposito sciolto

La capacità portante è stata calcolata mediante il software *Loadcap Ver. 2021* della *GeoStru* utilizzando la formula "*Brich-Hansen*" secondo le indicazioni per la progettazione geotecnica in zona sismica – Associazione Geotecnica Italiana e come suggerito nell'Eurocodice 7.

Formula Brinch-Hansen (EC 7 - EC 8):

Affinché una fondazione possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale, per tutte le combinazioni di carico relative allo SLU (stato limite ultimo), deve essere soddisfatta la seguente disuguaglianza:

$$Fd \leq Rd$$

Dove Ed è il carico di progetto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto "Rd" per un materiale sciolto coesivo (terreni a grana fine), si devono considerare distintamente le situazioni a breve e a lungo termine, mentre nei terreni incoerenti (granulari), le condizioni a breve e a lungo termine corrispondo.

Il carico limite di progetto in condizioni non drenate si calcola come:

$$\frac{R}{A'} = (2 + \pi) \cdot c_u \cdot s_c \cdot i_c + q$$

dove:

A' = B' L' = Area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico

 $c_{\rm u}$ = Coesione non drenata

q = Pressione litostatica totale sul piano di posa

 s_c = Fattore di forma

 i_c = Fattore correttivo per l'inclinazione del carico

Per le <u>condizioni drenate</u> il carico limite di progetto è calcolato come segue:

$$\frac{R}{A'} = c' \cdot N_c \cdot s_c \cdot i_c + q' \cdot N_q \cdot s_q \cdot i_q + 0.5 \cdot \gamma' \cdot B' \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma}$$

dove:

$$\begin{aligned} N_q &= e^{\pi \cdot tan \, \phi'} \cdot tan^2 (45 + \phi'/2) \\ N_c &= \left(N_q - 1 \right) \cot \phi' \\ N_\gamma &= 2 \cdot \left(N_q - 1 \right) tan \, \phi' \end{aligned}$$

Fattori di forma:

$$s_q=1+rac{B'}{L'}\cdot sen\phi'$$
 per forma rettangolare $s_q=1+sen\phi'$ per forma quadrata o circolare $s_\gamma=1-0.3rac{B'}{L'}$ per forma rettangolare $s_\gamma=0.7$ per forma quadrata o circolare $s_c=rac{s_q\cdot N_q-1}{N_q-1}$ per forma rettangolare, quadrata o circolare

Fattori di inclinazione come risultante dovuta ad un carico orizzontale H:

$$\begin{split} i'_c &= 0.5 - 0.5 \sqrt{1 - \frac{H}{A_f \cdot c_a}}. \\ i_c &= i_q - \frac{1 - i_q}{N_q - 1} \\ i_q &= \left(1 - \frac{H}{V + A' \cdot c' \cdot \cot \phi'}\right)^m \\ i_\gamma &= \left(1 - \frac{H}{V + A' \cdot c' \cdot \cot \phi'}\right)^{m+1} \\ i_c &= \frac{i_q \cdot N_q - 1}{N_q - 1} \end{split}$$

dove:

$$m = m_B = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B}{L'}\right)\right]} \quad \text{con H} //. B'$$

$$m = m_L = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]} \quad \text{con H} //. L'$$

Se H forma un angolo θ con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

$$m = m_{\theta} = m_L \cdot \cos^2 \theta + m_B \cdot \sin^2 \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Risultati verifica capacità portante :

Nella tabella di seguito viene esposto il valore di capacità portante del terreno di fondazione, ipotizzando una "platea di fondazione" posta in prossimità di un pendio inclinato di 10° e considerando, a favore di sicurezza, un incastro nullo.

L'analisi è stata svolta alle condizioni drenate e prevedendo una pressione massima di progetto E_d allo SLU pari a 5.5 kg/cmq. La pressione di progetto è stata calcolata considerando una colonna di terreno di riporto di altezza 30 metri (max. altezza della terra armata di progetto).

Per maggiori dettagli si rimanda ai tabulati di calcolo esposti in Allegato 1.

	Verifica capacità portante – condizioni drenate – con azione sismica						
L Lunghezza	B Base	D Incastro	Qlim	Rd (γ _R =2,3)	Ed	Fattore di sicurezza (FS=Qlim/Ed)	Condizione di verifica (Ed<=Rd)
(m)	(m)	(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(-)	(-)
15.0	10.0	0.0	20.06	8.72	5.50	3.65	Verificata



Figura 2 - Estratto del Modello geotecnico elaborato con il programma Loadcap Ver. 2021.

5.2.1. Verifica capacità portante: substrato roccioso

Al fine di determinare la capacità portante dell'ammasso roccioso interessato dalla terra armata di progetto, è stato fatto riferimento al metodo di calcolo proposto da Carter e Kulhawy (1988) basato sul criterio di rottura di Hoek e Brown, valido per fondazioni superficiali su materiali lapidei fratturati.

La portanza ultima di un ammasso roccioso può essere scritta nella forma:

$$q_u = \sigma_{ci} N_{\sigma}$$

Dove σ_{ci} è la resistenza a compressione non confinata della roccia intatta e N_{σ} è definito come fattore di capacità portante; questo ultimo si ricava dalla seguente formula:

$$N_{\sigma} = [s^a + (m_b s^a + s)^a]$$

dove m_b è un valore ridotto della costante del materiale " m_i " e "s" e "a" sono costanti per l'ammasso roccioso.

Secondo tale criterio, la portanza ultima di un ammasso viene considerata come una "frazione" della resistenza a compressione uniassiale della roccia intatta.

Sulla base del metodo di calcolo esposto e considerando a favore di sicurezza un valore di resistenza a compressione uniassiale della roccia intatta di 100 Mpa (ricavato da prove sclerometriche) e un coefficiente parziale γ_r di 10 come suggerito da diversi illustri Autori, si ottiene un carico limite:

$$R_d = q_u = 0.75 MPa \sim 7.5 kg/cmq$$

Dal risultato ottenuto è evidente che non sussistono problemi di portanza se si considera un carico di progetto E_d pari a 0.54 MPa ($E_d < R_d$); tuttavia, in fase esecutiva sarà necessario verificare il piano

di appoggio della terra armata e, in particolare, la giacitura delle discontinuità dell'ammasso roccioso al fine di verificare che quest'ultime non favoriscano l'innesco di fenomeni locali di scivolamento/cedimento seguito le sollecitazioni imposte dai carichi agenti sul piano basale.

5.3. VERIFICA AGLI STATI LIMITE DI ESERCIZIO (SLE - CEDIMENTI)

La capacità di garantire le prestazioni previste per le condizioni di esercizio (SLE) deve essere verificata confrontando il valore limite di progetto associato a ciascun aspetto di funzionalità esaminato (Cd), con il corrispondente valore di progetto dell'effetto delle azioni (Ed), attraverso la seguente espressione formale:

Ed < Cd

Dove:

Ed = valore di progetto dell'azione o degli effetti dell'azione

Cd = valore limite dell'effetto delle azioni (spostamenti e deformazioni che possano compromettere la funzionalità di una struttura).

I valori degli spostamenti e delle distorsioni andranno calcolati considerando le combinazioni di carico per gli SLE specificate al §2.5.3 delle Norme tecniche:

- Combinazione frequente
- Combinazione quasi permanente

Pertanto i cedimenti differenziali e assoluti alla base della struttura in esame, dovranno essere compatibili con il suo stato di sollecitazione (S.L.U.) e la sua funzionalità (S.L.E.).

Non esistono ancora dei modelli di calcolo in grado di definire esattamente quali potrebbero essere i cedimenti differenziali o assoluti in un materiale eterogeneo con delle caratteristiche geotecniche difficili da definire esattamente. In linea generale un cedimento uniforme non determina variazioni nello stato tensionale della struttura in elevazione, e pertanto potrebbero essere tollerati anche cedimenti elevati purché compatibili con la funzionalità dell'opera. Al contrario movimenti di rotazione rigida e cedimenti differenziali alterano le sollecitazioni nella struttura e sono quindi più pericolosi per l'integrità dell'opera.

Poiché tuttavia il cedimento differenziale aumenta al crescere del cedimento assoluto, spesso si pongono limitazioni al cedimento assoluto, di meno incerta determinazione, ed in tal modo ci si garantisce anche il rispetto al cedimento differenziale.

Esistono molti grafici e tabelle, proposti da vari Autori, che su base statistica indicano i valori ammissibili dei diversi parametri che definiscono i cedimenti assoluti e differenziali. Partendo dal presupposto che a elevati cedimenti assoluti generalmente corrispondono elevati cedimenti differenziali, Terzaghi e Peck proposero di considerare i seguenti valori limite tollerabili di cedimenti assoluti:

- → 2,5 cm in terreni incoerenti (sabbie e ghiaie)
- → 4 cm in terreni coesivi (limi e argille)

La maggiore tolleranza consentita per i materiali dotati di coesione dipende dal fatto che in questi ultimi i cedimenti avvengono più gradualmente in quanto sono prevalentemente dovuti alla consolidazione e quindi permetto alla struttura di adattarsi alle deformazioni del terreno.

5.3.1. Calcolo cedimenti elastici

I cedimenti di una fondazione rettangolare di dimensioni BxL posta sulla superficie di un semispazio elastico si possono calcolare in base ad una equazione basata sulla teoria dell'elasticità (Timoshenko e Goodier (1951)):

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_s} \left(I_1 + \frac{1 - 2\mu}{1 - \mu} I_2 \right) \cdot I_F \qquad (1)$$

dove:

q₀ = Intensità della pressione di contatto

B' = Minima dimensione dell'area reagente

 $E e \mu = Parametri elastici del terreno /$

I coefficienti I₁ e I₂ si possono calcolare utilizzando le equazioni fornite da Steinbrenner (1934) (V. Bowles), in funzione del rapporto L'/B' ed H/B, utilizzando B'=B/2 e L'=L/2 per i coefficienti relativi al centro e B'=B e L'=L per i coefficienti relativi al bordo.

Il coefficiente di influenza I_F deriva dalle equazioni di Fox (1948), che indicano il cedimento si riduce con la profondità in funzione del coefficiente di Poisson e del rapporto L/B.

In modo da semplificare l'equazione (1) si introduce il coefficiente ls:

$$I_S = I_1 + \frac{1 - 2\mu}{1 - \mu} \cdot I_2$$

Il cedimento dello strato di spessore H vale:

$$\Delta H = q_0 \cdot B' \frac{1 - \mu^2}{E_S} \cdot I_S \cdot I_F$$

Per meglio approssimare i cedimenti si suddivide la base di appoggio in modo che il punto si trovi in corrispondenza di uno spigolo esterno comune a più rettangoli. In pratica si moltiplica per un fattore pari a 4 per il calcolo dei cedimenti al centro e per un fattore pari a 1 per i cedimenti al bordo.

Nel calcolo dei cedimenti si considera una profondità del bulbo delle tensioni pari a 5B, se il substrato roccioso si trova ad una profondità maggiore. A tal proposito viene considerato substrato roccioso lo strato che ha un valore di E pari a 10 volte dello strato soprastante. Il modulo elastico per terreni stratificati viene calcolato come media pesata dei moduli elastici degli strati interessati dal cedimento immediato.

Di seguito si riportano i risultati ottenuti ipotizzando un carico di progetto pari a 5.5 kg/cmq applicato omogeneamente su tutta la superficie della "platea" e lo stesso modello geometrico/geotecnico adottato nel calcolo del carico limite di progetto (si veda il Paragrafo 5.2).

Pressione normale di progetto	5.5 kg/cmq
Spessore strato	6.0 m
Profondità substrato roccioso	6.0 m
Modulo Elastico strato	350 kg/cmq
Coefficiente di Poisson	0.30 (-)
Coefficiente di influenza I1	0.14 (-)
Coefficiente di influenza l2	0.1 (-)
Coefficiente di influenza Is	0.23 (-)
Cedimento al centro della fondazione	50.86 mm
Coefficiente di influenza I1	0.06 (-)
Coefficiente di influenza l2	0.09 (-)
Coefficiente di influenza Is	0.11 (-)
Cedimento al bordo (mm)	12.28 mm

In ragione dei risultati sopraesposti ottenuti utilizzando il valore minimo del modulo elastico del terreno di fondazione e il suo spessore massimo, considerando inoltre la presenza di un materiale incoerente e definito da buone caratteristiche generali di compressibilità, i cedimenti di tali "fondazioni" sono da prevedere repentini, di entità modesta e compatibili con la struttura in progetto.

Tuttavia si raccomanda particolare attenzione in fase esecutiva affinché le "fondazioni" poggino su terreno compatto con caratteristiche geotecniche omogenee al fine di limitare al massimo eventuali cedimenti differenziali. Si raccomanda si addensare adeguatamente il piano di imposta della terra rinforzata mediante rulli costipatatori.

Rimane compito del Progettista verificare la compatibilità dell'opera con i cedimenti previsti ed eventualmente prevedere adeguate fondazioni profonde/superficiali.

5.4. STABILITA' DEI FRONTI DI SCAVO

Gli scavi di sbancamento in roccia eseguiti verosimilmente per realizzare il/i piano/i di posa dell'opera in terra rinforzata, potranno essere eseguito a pareti sub-verticali a condizioni che l'ammasso si presenti compatto oppure che presenti una fratturazione con una giacitura a reggipoggio, quindi favorevole alle operazioni di scavo; a tal fine in fase esecutiva si dovrà verificare che l'orientazione dei sistemi di fratturazione e dei giunti di strato non favoriscano crolli o ribaltamenti di blocchi.

Nell'eventualità che la roccia non si presenti favorevole all'esecuzione dello scavo e all'incolumità delle persone, sarà necessario diminuire l'inclinazione delle pareti di scavo ad angoli opportuni. In ogni caso, si raccomanda di mantenere le pareti di scavo sempre pulite da eventuali blocchi instabili sino alla sua completa chiusura.

Per quanto riguarda lo strato di copertura superficiale, questo dovrà essere profilato con un angolo di sicurezza in funzione dell'altezza di scavo come dà indicazioni riportate nella seguente Tabella.

Le verifiche di stabilità dei fronti di scavo devono essere effettuate agli stati limite ultimi secondo Approccio 1 - Combinazione 2 (A2+ M2+R2), tenendo conto dei valori dei coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 6.8.I del D.M. 17 gennaio 2018.

Per quanto riguarda la stabilità dei fronti di scavo nel deposito sciolto, l'inclinazione della scarpata è stata valutata applicando la relazione di Hoek & Bray (1981) in rapporto ai valori di angolo di attrito, coesione e peso di volume dei materiali (cfr. Diagramma in Fig. 3 – Pendio totalmente drenato).

Ai terreni interessati dagli scavi è possibile assegnare un valore di <u>coesione apparente</u> pari a 5 kPa (0,05 kg/cm²) riferibile al buon grado di addensamento del terreno e alla componente limosa, nonché in considerazione del breve tempo di apertura degli scavi.

Considerando i seguenti parametri di progetto (X_d):

$v_{n} = 18.5 \text{ kN/m}^{3}$	ტ' _ძ = 26°	c₁= 3.5 kPa
γ _n — 10.0 κ(4)111	Ψα	$c_0 - c_0$

si ottengono, per diverse profondità di scavo, i risultati illustrati nella tabella che segue.

scavo	FS				angolo di scarpa	arretramento del ciglio rispetto al fondo scavo
Н		tgø/F	c/γHtgφ	c/γHF		
(m)	-	-	-	-	(°)	(m)
2,0		0.454	0.193	0.088	58	1,2
3,0	1.1	0.454	0.129	0.059	48	2,7
4,0	1,1	0.454	0.097	0.044	42	4,4
6,0		0.454	0.064	0.029	38	7,6

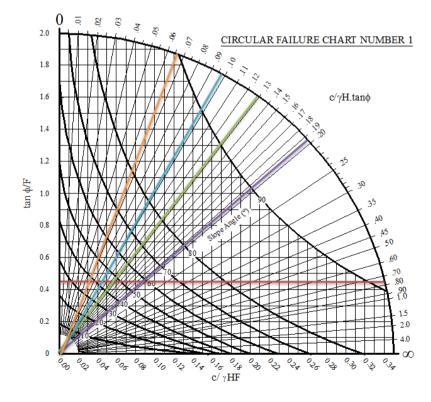
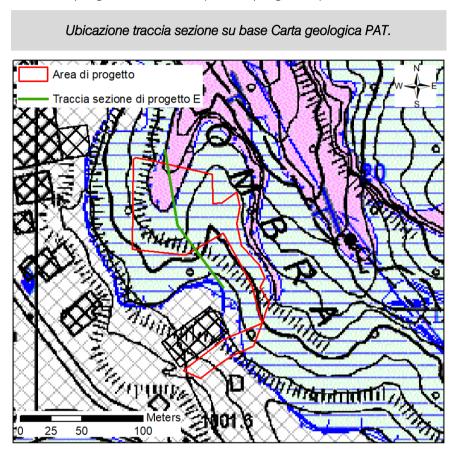


Figura 3 - Circular failure chart nr.1: full drained slope. (Hoek&Bray, 1981).

Le scarpate potranno pertanto essere dotate di acclività comprese tra 38° e 58° per scavi approfonditi da 2,0 a 6,0 m dal p.c..

Le geometrie di scavo sopra riportate sono valide in condizioni di stabilità a <u>breve termine</u>, in <u>assenza</u> <u>di carichi in prossimità del fronte di scavo e di venute d'acqua al fronte</u>. Nel caso di pioggia, allo scopo di proteggere le maestranze al lavoro al fondo degli scavi, si raccomanda di coprire i fronti di scavo con teli impermeabili fissati al terreno, per evitare scivolamenti superficiali di materiali.

Per scavi in trincea a fronte verticale di altezza superiore ai 2 m, nei quali sia prevista la permanenza di personale, e per scavi che ricadano in prossimità di manufatti esistenti, deve essere prevista una struttura di sostegno delle pareti di scavo (cfr. NTC18 - § 6.8.6.2 Criteri generali di progetto e verifiche di sicurezza).


La realizzazione degli scavi dovrà osservare le seguenti indicazioni:

- ➤ la stabilità degli scavi, nelle condizioni geometriche proposte, si intende comunque a breve termine, cioè limitata al periodo di tempo strettamente necessario alla realizzazione dell'opera;
- ➤ lungo il perimetro dello scavo e in particolare sul lato di monte, dovrà essere garantita una fascia di rispetto dal bordo scavo dove non potranno gravare sovraccarichi (in particolare stoccaggio di materiali, gru, ecc.) o transitare veicoli fino a scavo aperto;
- ➤ per evitare il crollo di piccoli blocchi dalla parete e proteggere quindi le maestranze durante i lavori al fondo degli scavi, sarà cura della D.L. far stendere lungo il fronte delle scarpate eventuali teli o reti di protezione a maglia stretta (6 x 8 cm);
- ➤ le caratteristiche fisico-meccaniche della roccia e la fratturazione dell'ammasso roccioso consentono di eseguire lo scavo utilizzando i normali mezzi di scavo muniti di martello demolitore idraulico:
- ➤ si dovrà prestare particolare attenzione allo strato di terreno sciolto che ricopre la roccia, in quanto l'eventuale presenza d'acqua al contatto tra roccia e materiale sciolto e l'assenza di contenimento a valle può facilitarne lo slittamento; in tal senso le operazioni di scavo dovranno essere realizzate in condizioni meteorologiche favorevoli;
- > in fase di scavo sarà opportuno verificare che le vibrazioni indotte nel sottosuolo dai mezzi escavatori non vadano a danneggiare i manufatti adiacenti;
- ➤ vista la possibile presenza di infiltrazioni idriche o l'attivazione di occasionali circolazioni idriche sospese in occasione di piogge, sarà necessario creare un sistema drenante perimetrale allo scavo, ed in particolar modo nel lato a monte, per raccogliere e smaltire le eventuali acque di infiltrazione sia superficiali che ipogee.

Durante l'esecuzione degli scavi di sbancamento sarà necessario accertare l'omogeneità del sottosuolo e la reale situazione idrogeologica.

5.5. VERIFICHE DI STABILITÀ GLOBALE

Al fine di accertare l'idoneità dell'intervento in programma e quindi verificare la stabilità globale della terra armata di progetto, sono state eseguite analisi di stabilità globale lungo la sezione ritenuta più significativa (maggiore altezza dell'opera e maggiore spessore del deposito sciolto al piede dell'opera) e rappresentativa dei lavori che si intendono eseguire. Nell'immagine seguente si riporta la traccia della sezione di progetto esaminato (Sez. di progetto E).

Le verifiche di stabilità sono state condotte agli stati limite ultimi utilizzando i valori dei parametri geotecnici esposti nel modello geotecnico.

Nella tabella di seguito sono riassunti per ciascuna unità geotecnica i *parametri di progetto (X_d)* adottati nelle analisi di stabilità (in assenza di azione sismica):

	Peso di volume	Angolo di attrito	Coesione
Unità geot.	γ d	φ' _d	C' _d
	(kN/m³)	(°)	(kN/m²)
			[
A	18.5	26.5	1.4
R	18.0	28.3	1.4
S	24.0	41.2	186.5

Le analisi sono state condotte tramite il programma Slide di Rocscience Inc. (ver. 6.009), che consente la ricerca automatica delle superfici di scorrimento più sfavorevoli, utilizzando i metodi di calcolo di GLE/Morgenstern-Price, Spencer e Bishop. La procedura di calcolo prende in

considerazione tutte le forze e/o i momenti agenti lungo il piano di taglio, fornendo una valutazione della stabilità globale attraverso le equazioni d'equilibrio fornite dalla statica.

Il coefficiente di sicurezza globale del pendio è calcolato attraverso il rapporto fra la resistenza di taglio massima disponibile lungo la superficie di rottura (Tmax) e gli sforzi tangenziali mobilitati (Tmob) lungo tale piano (F.S.= Tmax/Tmob).

Le <u>verifiche di stabilità in assenza di azioni sismiche</u> dei manufatti di materiali sciolti quali rilevati, argini di difesa per fiumi, canali e litorali, rinfianchi, rinterri, terrapieni e colmate, scavi per la formazione di piazzali e/o trincee devono essere effettuate agli SLU secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei valori dei coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 6.8.I del D.M. 17 gennaio 2018.

Le <u>verifiche degli stati limite ultimi in presenza di azioni sismiche</u> per le opere in terra possono essere svolte con gli stessi metodi impiegati per le condizioni non sismiche e adoperando lo stesso approccio sopra menzionato -Combinazione 2 Approccio 1-, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a $\gamma R = 1.2$.

Nella tabella seguente si riportano sinteticamente i risultati ottenuti considerando l'azione sismica allo stato limite di salvaguardia della vita (SLV) riportata nella Relazione geologica e il transito/la sosta di mezzi pesanti (20 kPa) sul piazzale a monte dell'opera. Nelle analisi non è stata considerata la presenza di falda acquifera in quanto non prevista.

Sintesi risultati verifiche di stabilità globale:

Sez. di	Azione			a NTC 2018	F.S. min	FS min	F.S. min
progetto	sismica (SLV)	mezzi pesanti (kPa)	con azione sismica	senza azione sismica	(GLE/ M-P)	(Spencer)	(Bishop)
Е	no	20	-	1.10	1.169	1.166	1.168
Е	si	20	1.20	-	1.443	1.442	1.445

Tutte le verifiche eseguite considerando la nuova geometria del pendio, la terra armata e i futuri carichi prevedibili, hanno fornito coefficienti di sicurezza ammissibili rispetto al valore limite previsto dalla normativa tecnica (NTC2018).

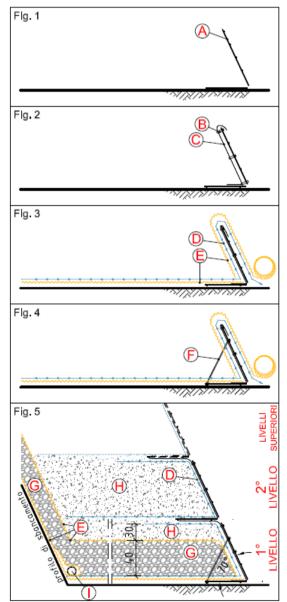
Sulla base di quanto osservato dalle analisi, si evidenzia chiaramente che la stabilità dell'intervento è determinata dalla stabilità interna dell'opera in terra; non si ravvisano criticità relative alla stabilità globale del piano di appoggio in considerazione alle basse/mediocri pendenze e alla presenza di substrato roccioso sub-affiorante o poco profondo. Al fine di garantire la stabilità della terra armata di progetto, è indispensabile una corretta realizzazione e dimensionamento delle geogriglie di rinforzo, l'esecuzione di drenaggi a tergo e alla base dell'opera, la corretta stesura del materiale di riempimento, nonché l'ammorsamento della struttura nel terreno (ammorsamento minimo 2,0 metri dall'attuale p.c.) nella porzione ubicato lungo fondovalle.

La stabilità globale dell'opera s'intende soddisfatta nelle condizioni al contorno ipotizzate nelle verifiche e adottando le modalità geo-esecutive descritte nel capitolo seguente. Le sezioni analizzate con le superfici verificate e i tabulati di calcolo sono riportate in Allegato 2 della presente.

6. INDICAZIONI GEO-ESECUTIVE

Dal punto di vista della stabilità risulta che per realizzare quanto definito in progetto, sarà di fondamentale importanza la metodologia e le attenzioni con le quali saranno eseguiti i lavori. Di seguito si riportano alcune indicazioni progettuali e raccomandazioni esecutive affinché la realizzazione di quanto previsto sia compatibile con la stabilità globale del versante.

Indicazioni relative alla realizzazione del terrapieno e della terra armata:


- → Dal punto di vista geo-esecutivo, in primo luogo si dovrà dissodare e rimuovere il cotico erboso presente lungo i pendii esistenti e lo strato più superficiale della coltre fluvioglaciale per eliminare una potenziale interfaccia di scivolamento tra il materiale di riporto e il terreno in posto.
- → Relativamente il materiale di riporto che costituirà il corpo del terrapieno/terra armata, si consiglia l'utilizzo di materiali prevalentemente granulari (gruppi A1 A2 A3 della classificazione CNR UNI 1006) ben gradati in modo da ottenere una adeguata compattazione e caratterizzati da buoni valori di attrito (φ' ≥ 34). I terreni mediamente gelivi (A2) dovranno essere utilizzati nella porzione più interna del riempimento. Il materiale dovrà avere caratteristiche geotecniche adeguate ad essere impiegato come rilevato, consultando il geologo (Direttore operativo geologo) fin dalle prime fasi esecutive.
- → Il terreno di riporto dovrà essere disposto per strati di 20÷30 cm di spessore, progressivamente compattati tramite passaggi ripetuti di rulli compattatori di stazza adeguata; vicino alla facciata deve essere utilizzato un impianto di compattazione a mano più leggero, come ad esempio una piastra vibrante, con massa complessiva inferiore a 1000 kg. Il materiale dovrà essere compattato fino ad ottenere una costipazione non inferiore al 95% dello Standard Proctor. In tal modo si ridurrà l'indice dei vuoti e quindi diminuiranno sia la propensione alla saturazione sia la possibilità di destabilizzazione; la costipazione meccanica assegnerà una certa coesione al sedimento.
- → Allo scopo di verificare il grado di costipamento del materiale riportato e quindi ridurre al minimo eventuali cedimenti interni al terrapieno, si consiglia, in fase di realizzazione del riempimento, l'esecuzione di prove di carico a doppio ciclo su piastra secondo la Norma CNR BU N. 146 del 14 Dicembre 1992 ogni 1.5 ÷3.0 m di spessore di materiale steso. I risultati delle prove dovranno essere analizzati dal geologo/geotecnico incaricato e successivamente la sua approvazione si potrà procedere alla stesa dei successivi strati di terreno.
- → Si consiglia di gradonare l'interfaccia tra il terreno in posto e il materiale di riporto per aumentare l'attrito tra i due materiali e quindi scongiurare le formazioni di piani di scivolamento.
- → Realizzare per le terre armate piani di posa ben consolidati e sub-orizzontali (leggermente inclinati verso l'interno del versante); lungo il fondovalle l'opera dovrà essere ammorsate nel terreno per almeno metri 2.0 mentre, lungo i fianchi della vallecola, la terra armata dovrà poggiare su substrato roccioso su un piano in leggere contropendenza (2÷5°).
- → A tergo delle terre rinforzate ed a livello fondazionale è necessario prevedere un adeguato sistema drenante in grado di raccogliere e allontanare le acque di percolazione superficiale e profonda, evitando così saturazioni del riempimento e fenomeni di erosione. Le acque raccolte dovranno essere accompagnate mediante idonee tubazioni e smaltite più a valle in aree stabili o in appositi collettori.
- → Il paramento della terra rinforzata potrà essere realizzato con pendenza anche prossime alla verticalità, tuttavia, si preferisce mantenere un certo angolo (max 75÷80°) al fine di consentire

alla pioggia di bagnare adeguatamente la scarpata e favorire la crescita della coltre vegetazionale. A tale scopo, è opportuno posare, nella zona frontale, uno strato di terreno ricco in componente umica (terreno vegetale) di spessore minimo cm. 15 e/o installare un bio-feltro preseminato, o altro intervento similare.

- → A fine lavori, tutte le rampe denudate dovranno essere ricoperte con uno strato di terreno vegetale sabbioso (spessore 15-20 cm), che sarà subito inerbito mediante semina a spaglio con essenze erbacee.
- → Si raccomanda inoltre il controllo delle acque superficiali sia in fase esecutiva sia nei primi mesi successivi alla fine dei lavori, quando le rampe saranno costituite da terreno di riporto rimaneggiato, non ancora protetto da un cotico erboso stabilizzante.

6.1. PROCEDURA DI INSTALLAZIONE TERRA ARMATA

- Fig. 1: Preparazione del piano di posa mediante compattazione meccanica del fondo di scavo; eliminare eventuali corpi estranei che potrebbero danneggiare la rete di rinforzo e/o i suoi componenti. Sovrapposizione dei casseri di almeno 1 maglia (A).
- Fig. 2: Posizionamento dell'elemento anti-erosione (C), prevedendo il fissaggio alla cassaforma metallica mediante fascette in plastica o similare (B);
- Fig. 3: Stesura di telo in tessuto-non tessuto alla base (E), successiva posa della geogriglia di rinforzo (D) e suo risvolto oltre il cassero, posa sulla parete inclinata del cassero di tessuto non tessuto e suo risvolto oltre il paramento. Sovrapposizione teli adiacenti di almeno 50 cm;
- Fig. 4: Installazione dei picchetti di irrigidimento della casseratura, posti con passo di ca. 30 cm (F);
- Fig. 5: Posa, nel solo 1° livello, di strato di ghiaia di drenaggio di pezzatura 35÷70 ca. (G) lungo il fondo con inserimento, a ridosso della parete di scavo, di tubo drenante f = 20 cm (I), dotato di sufficienti uscite verso il paramento; protezione dello stesso con tessuto-non tessuto. Risvolto e chiusura dello strato drenante con tessuto-non tessuto precedentemente risvoltato (E). Successiva posa del terreno di rinforzo (H) per strati successivi di max. 30 cm compattati meccanicamente. Posa dei successivi livelli del materiale di riempimento (H) per strati di max. 30 cm di spessore idoneamente compattati meccanicamente. Per agevolare la crescita di vegetazione sul paramento si consiglia di utilizzare a ridosso dell'armatura del cassero, terreno vegetale, da inerbire successivamente con idrosemina su richiesta della Committenza o bio-feltro preseminato.

7. CONCLUSIONI

Nell'area in esame è richiesto il cambio coltura delle PP.FF. 3505/1, 3505/2, 1869/2, 1958/5, 1880/4, 1880/5, 1878/1, 1878/2, 1879, 3504, 1877, 1875, 1874, 3503/1 e 245/2 in C.C. FONDO, allo scopo di ottenere un'area piana da destinare a parcheggi nell'ambito del futuro ampliamento della Ditta FAE, previsto in adiacenza all'area in esame. Per realizzare il parcheggio scoperto si rende necessario un importante intervento di modellazione del terreno mediante la realizzazione di terre armate e il riporto di terreno.

Lo studio eseguito ha evidenziato che il terreno del sottosuolo d'interesse è costituito da un modesto deposito sciolto sabbioso e ghiaioso debolmente limoso e da substrato roccioso calcareo-dolomitico. Questi, che costituiranno il piano d'imposta delle opere in progetto, sono dotati di buone caratteristiche geotecniche (portanza). I parametri geotecnici indicati al Capitolo 1 consentono al progettista dell'opera in terra il corretto dimensionamento delle strutture e delle loro fondazioni, in base alla geometria e ai carichi previsti.

Si raccomanda particolare attenzione in fase esecutiva affinché il piano basale della terra armata poggi su terreno compatto con caratteristiche geotecniche omogenee.

Nel corso dei sopralluoghi non è stata rilevata la presenza di una falda acquifera o la presenza di circolazione idrica in prossimità della superficie, tuttavia non si escludono locali circolazioni idriche sotterranee soprattutto in concomitanza di piogge intense. Per tale motivo si raccomanda di prevedere idonei sistemi di drenaggio ed allontanamento delle acque.

Le verifiche geotecniche riportate nei Paragrafi 5.2 e 5.3 hanno permesso di definire preliminarmente la capacità portante e i cedimenti dei terreni di fondazione; tali analisi hanno restituito tutte esito positivo ipotizzando una pressione di contatto massima di 5.5 kg/cm². Resta tuttavia compito del progettista dell'opera in terra verificare la compatibilità dell'opera, con la capacità portante prevista e le pressioni di contatto indotte dai carichi di progetto.

Le analisi geotecniche esposte ai Paragrafi 5.4 e 5.5 hanno permesso di definire gli angoli di scarpa da assegnare alle pareti di scavo e verificare la stabilità globale del versante con le nuove geometrie/opere e i futuri carichi prevedibili.

Sulla base dei risultati ottenuti si afferma che la realizzazione di quanto in progetto è compatibile con i terreni sui quali ricade; l'intervento risulta fattibile a condizione che vengano osservate le prescrizioni tecniche esposte nel presente elaborato (con particolare riferimento al capitolo 6 - *Indicazioni geoesecutive*).

Ricordando l'impossibilità di fare valutazioni geologiche e geotecniche assolutamente attendibili dei siti di progetto, in quanto interpretazione di un modello fisico naturale, si valuta di seguito la variabilità e l'incertezza che si possono incontrare in fase di realizzazione, derivante da eventuali indeterminatezze nella ricostruzione del modello geologico e idrogeologico che possano risultare significative ai fini dello sviluppo del progetto.

In considerazione della tipologia dei depositi presenti, dei riscontri derivanti dal rilievo di superficie e dalle indagini sismiche svolte, i Modelli geologico e geotecnico proposti sono da ritenersi nel complesso contraddistinti da media-bassa variabilità (relativamente all'effettiva permeabilità del

terreno, allo spessore del deposito sciolto e alla parametrizzazione geotecnica). Tali aspetti dovranno essere osservati e valutati specificatamente in sede esecutiva mediante idonei ed efficaci metodi di indagine esplorativa con la supervisione di un geologo.

Si ricorda che potrebbero comunque sussistere incertezze e variabilità locali, intrinseche con la tipologia di sedimentazione e messa in posto dei terreni, che comunque non inficiano sostanzialmente la validità concettuale del modello generale. Il presente studio esprime pertanto parere positivo sulla fattibilità degli interventi in esame, in ordine agli aspetti geotecnici di previsione.

In questa fase progettuale non è stato possibile effettuare alcuna indagine geotecnica sito-specifica, si rende pertanto necessario verificare in corso d'opera la rispondenza tra il Modello geologico e geotecnico di riferimento assunto in progetto e la situazione effettiva così come previsto dalla normativa di settore. La Relazione geotecnica dovrà essere integrata in fase esecutiva con tutte le previste verifiche della sicurezza e delle prestazioni di cui al capitolo 6.2.4. e 6.8 delle NTC2018.

Si rammenta che quanto riportato si riferisce allo specifico intervento e non può essere rappresentativo per altri interventi, anche sul medesimo areale.

Sarnonico, 18 marzo 2022

il Geologo dott. geol. Gianluca Abram

TABULATI VERIFICHE GEOTECNICHE

- Capacità portante (SLU)Cedimenti (SLE)

DATI GENERALI

Normativa	NTC 2018
Larghezza fondazione	10.0 m
Lunghezza fondazione	15.0 m
Profondità piano di posa	0.0 m
Inclinazione pendio	10.0 °
Distanza fondazione dal pendio	1.0 m

SISMA

Accelerazione massima (amax/g) 0.071
Effetto sismico secondo Paolucci, Pecker (1997)
Coefficiente sismico orizzontale 0.0141

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T2

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	$[m/s^2]$	[-]	[sec]
	[anni]			
S.L.O.	30.0	0.186	2.584	0.158
S.L.D.	50.0	0.235	2.569	0.187
S.L.V.	475.0	0.481	2.664	0.338
S.L.C.	975.0	0.579	2.775	0.369

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

S.L.	amax	beta	kh	kv
Stato limite	$[m/s^2]$	[-]	[-]	[sec]
S.L.O.	0.2678	0.2	0.0055	0.0027
S.L.D.	0.3384	0.2	0.0069	0.0035
S.L.V.	0.6926	0.2	0.0141	0.0071
S.L.C.	0.8338	0.2	0.017	0.0085

STRATIGRAFIA TERRENO

Spessore	Peso unità	Peso unità di	Angolo di	Coesione	Coesione non	Modulo	Descrizione
strato	di volume	volume saturo	attrito	[Kg/cm ²]	drenata	Elastico	
[m]	$[Kg/m^3]$	$[Kg/m^3]$	[°]		[Kg/cm ²]	[Kg/cm ²]	
6.0	1850.0	2000.0	32.0	0.02	0.05	350.0	Unità geot. A
8.0	2400.0	2400.0	47.0	2.6	2.6	37220.0	Unità geot. S

Carichi di progetto agenti sulla fondazione

	Nr.	Nome combinazione	Pressione normale di progetto	Tipo
			[Kg/cm ²]	_
	1	A1+M1+R3	5.50	Progetto
	2	SISMA	5.50	Progetto
	3	S.L.E.	5.50	Servizio
ĺ	4	S.L.D.	5.50	Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione	Tangente	Coesione	Coesione	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.
	Sismica	angolo di	efficace	non drenata	volume in	volume	Capacità	Capacità
		resistenza al			fondazione	copertura	portante	portante
		taglio					verticale	orizzontale
1	No	1	1	1	1	1	2.3	1.1
2	Si	1	1	1	1	1	2.3	1.1
3	No	1	1	1	1	1	1	1
4	No	1	1	1	1	1	1	1

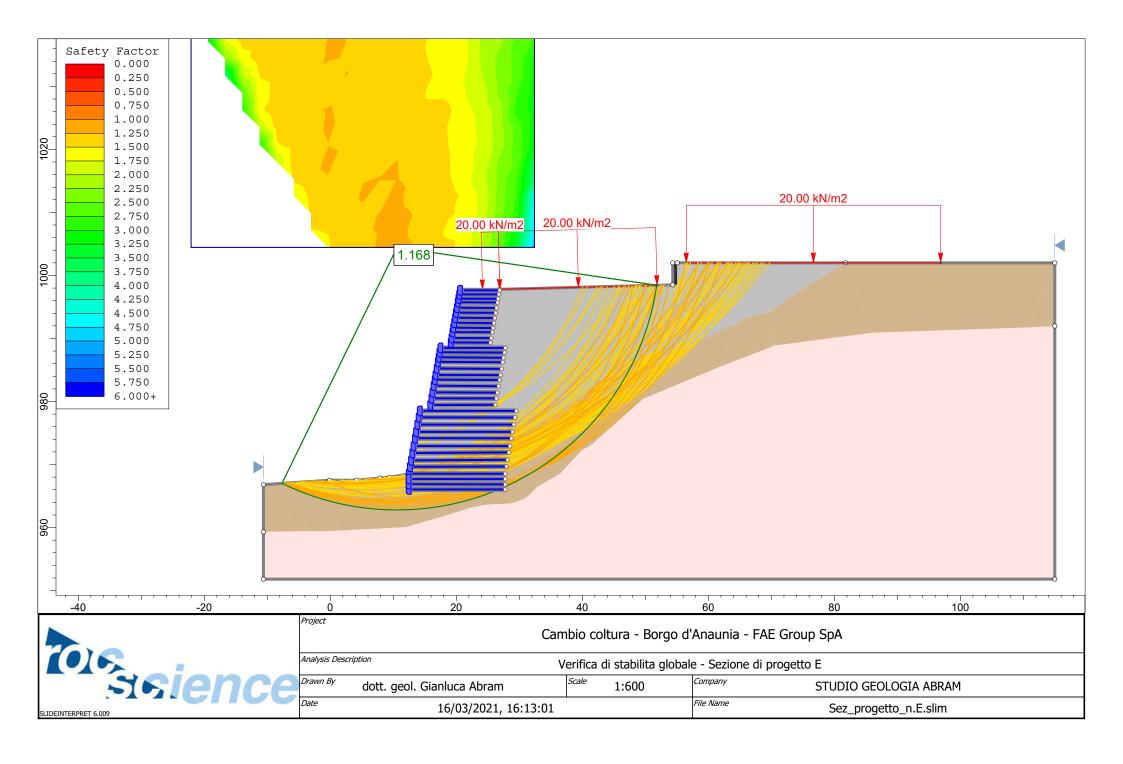
CARICO LIMITE FONDAZIONE COMBINAZIONE A1+M1+R3 CON AZIONE SISMICA

Carico limite [Qult] 20.06 Kg/cm²
Resistenza di progetto [Rd] 8.72 Kg/cm²
Tensione [Ed] 5.5 Kg/cm²
Fattore sicurezza [Fs=Qult/Ed] 3.65
Condizione di verifica [Ed<=Rd] Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982) Costante di Winkler 8.02 Kg/cm³

Autore: Brinch - Hansen 1970 (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO


Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	1850.0 Kg/m ³ 2000.0 Kg/m ³ 32.0 ° 0.02 Kg/cm ²
Fattore [Nq] Fattore [Nc]	23.18 31.53
Fattore [Ng] Fattore forma [Sc] Fattore professible [De]	27.72 1.37 1.0
Fattore profondità [Dc] Fattore inclinazione carichi [Ic] Fattore inclinazione pendio [Gc]	1.0 1.0 1.0
Fattore inclinazione base [Bc] Fattore forma [Sq]	1.0 1.35
Fattore profondità [Dq] Fattore inclinazione carichi [Iq]	1.0 1.0
Fattore inclinazione pendio [Gq] Fattore inclinazione base [Bq]	1.0 1.0
Fattore forma [Sg] Fattore profondità [Dg] Fattore inclinazione carichi [Ig]	0.8 1.0 1.0
1.63	

Fattore inclinazione pendio [Gg] Fattore inclinazione base [Bg] Fattore correzione sismico inerziale [zq] Fattore correzione sismico inerziale [zg] Fattore correzione sismico inerziale [zc]	1.0 1.0 0.95 0.94 0.97
Carico limite Resistenza di progetto	20.06 Kg/cm ² 8.72 Kg/cm ²
Condizione di verifica [Ed<=Rd]	Verificata

CEDIMENTI ELASTICI

5.5 Kg/cm ²			
6.0 m			
6.0 m			
350.0 Kg/cm ²			
0.3			
0.17			
0.1			
0.23			
50.86 mm			
0.06			
0.09			
0.11			
12.28 mm			

ANALISI DI STABILITA' CON TABULATI DI CALCOLO

Slide Analysis Information

Cambio coltura - Borgo d'Anaunia - FAE Group SpA

Project Summary

File Name: Sez_progetto_n.E.slim Slide Modeler Version: 6.009

Project Title: Cambio coltura - Borgo d'Anaunia - FAE Group SpA Analysis: Verifica di stabilità globale - Sezione di progetto E

Author: dott. geol. Gianluca Abram Company: STUDIO GEOLOGIA ABRAM Date Created: 16/03/2021, 16:13:01

General Settings

Units of Measurement: Metric Units

Time Units: days

Permeability Units: meters/second Failure Direction: Right to Left

Data Output: Standard

Maximum Material Properties: 20 Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 - Design Approach 1, Combination 2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Sez_progetto_n.E.slim

STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

Analysis Methods Used

Bishop simplified GLE/Morgenstern-Price with interslice force function: Half Sine Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 9.81 kN/m3 Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Search Method: Grid Search Radius Increment: 10 Composite Surfaces: Enabled

Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

2 Distributed Loads present

Distributed Load 1

Distribution: Constant
Magnitude [kN/m2]: 20
Orientation: Normal to boundary
Load Action: Variable

Distributed Load 2

Distribution: Constant
Magnitude [kN/m2]: 20
Orientation: Normal to boundary
Load Action: Variable

Material Properties

Property	Unità A	Unità S	Unità R	Muro cls
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Infinite strength
Unit Weight [kN/m3]	18.5	24	18	24
Cohesion [kPa]	2	261.165	2	
Friction Angle [deg]	32	47.6289	34	
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Support Properties

Geotessile

Support Type: GeoTextile Force Application: Active

Force Orientation: Bisector of Parallel and Tangent

Anchorage: Slope Face Shear Strength Model: Linear Strip Coverage: 100 percent Tensile Strength: 300 kN/m

Pullout Strength Adhesion: 5 kN/m2
Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.168970

Center: 10.606, 1004.449

Radius: 41.667

Left Slip Surface Endpoint: -7.666, 967.002 Right Slip Surface Endpoint: 51.836, 998.435

Resisting Moment=378722 kN-m
Driving Moment=323978 kN-m

Method: spencer

Sez_progetto_n.E.slim

FS: 1.166340

Center: 10.606, 1004.449

Radius: 41.667

Left Slip Surface Endpoint: -7.666, 967.002 Right Slip Surface Endpoint: 51.836, 998.435

Resisting Moment=377868 kN-m Driving Moment=323978 kN-m Resisting Horizontal Force=7731.82 kN Driving Horizontal Force=6629.14 kN

Method: gle/morgenstern-price

STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

FS: 1.168280 Center: 10.606, 1004.449

Radius: 41.667

Left Slip Surface Endpoint: -7.666, 967.002 Right Slip Surface Endpoint: 51.836, 998.435

Resisting Moment=378496 kN-m Driving Moment=323978 kN-m Resisting Horizontal Force=7733.24 kN Driving Horizontal Force=6619.35 kN

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 2741 Number of Invalid Surfaces: 2110

Error Codes:

Error Code -99 reported for 202 surfaces Error Code -106 reported for 39 surfaces Error Code -107 reported for 1793 surfaces Error Code -108 reported for 1 surface Error Code -109 reported for 17 surfaces Error Code -112 reported for 3 surfaces Error Code -1000 reported for 55 surfaces

Method: spencer

Number of Valid Surfaces: 2401 Number of Invalid Surfaces: 2450

Error Codes:

Error Code -99 reported for 202 surfaces Error Code -106 reported for 39 surfaces Error Code -107 reported for 1793 surfaces Error Code -108 reported for 62 surfaces Error Code -109 reported for 17 surfaces Error Code -111 reported for 279 surfaces Error Code -112 reported for 3 surfaces Error Code -1000 reported for 55 surfaces

Method: gle/morgenstern-price

Number of Valid Surfaces: 2680 Number of Invalid Surfaces: 2171

Error Codes:

Error Code -99 reported for 202 surfaces Error Code -106 reported for 39 surfaces Error Code -107 reported for 1793 surfaces Error Code -108 reported for 50 surfaces Error Code -109 reported for 17 surfaces Error Code -111 reported for 12 surfaces

Sez_progetto_n.E.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

Error Code -112 reported for 3 surfaces Error Code -1000 reported for 55 surfaces

Error Codes

The following errors were encountered during the computation:

- -99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.
- -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.
- -107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.
- -108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).
- -109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.
- -111 = safety factor equation did not converge
- -112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.
- -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.16897

Slice Number	Width [m]	Weight [kN]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]
1	2.45792	28.7614	Unità A	1.6	26.5603	7.88379	9.21591	15.235	0	15.235
2	2.45792	82.1137	Unità A	1.6	26.5603	18.632	21.7803	40.3692	0	40.3692
3	2.45792	127.411	Unità A	1.6	26.5603	27.0551	31.6266	60.0656	0	60.0656
4	2.45792	161.886	Unità A	1.6	26.5603	32.8888	38.446	73.7073	0	73.7073
5	2.45792	185.223	Unità A	1.6	26.5603	36.3232	42.4607	81.7385	0	81.7385
6	2.45792	208.302	Unità A	1.6	26.5603	39.5513	46.2343	89.2874	0	89.2874
7	2.45792	228.173	Unità A	1.6	26.5603	42.059	49.1657	95.1514	0	95.1514
8	2.45792	246.051	Unità A	1.6	26.5603	44.1039	51.5561	99.9332	0	99.9332
9	2.45792	402.215	Unità A	1.6	26.5603	69.4756	81.2149	159.263	0	159.263
10	2.45792	725.982	Unità A	1.6	26.5603	121.309	141.806	280.471	0	280.471
11	2.45792	1072.51	Unità A	1.6	26.5603	174.265	203.711	404.304	0	404.304
12	2.45792	1373.32	Unità A	1.6	26.5603	217.343	254.068	505.042	0	505.042
13	2.45792	1461.05	Unità A	1.6	26.5603	225.806	263.96	524.829	0	524.829
14	2.45792	1424.91	Unità A	1.6	26.5603	223.738	261.543	519.993	0	519.993
15	1.00719	571.939	Unità R	1.6	28.3516	208.158	243.331	447.975	0	447.975
16	2.43541	1356.22	Unità A	1.6	26.5603	207.137	242.137	481.174	0	481.174
17	2.43541	1302.64	Unità A	1.6	26.5603	193.537	226.239	449.373	0	449.373
18	2.43541	1238.03	Unità A	1.6	26.5603	178.567	208.739	414.365	0	414.365
19	2.43541	1162.66	Unità A	1.6	26.5603	162.325	189.753	376.384	0	376.384
20	2.43541	1074.57	Unità A	1.6	26.5603	144.622	169.059	334.988	0	334.988
21	2.43541	971.311	Unità A	1.6	26.5603	125.251	146.415	289.69	0	289.69
22	2.43541	845.612	Unità A	1.6	26.5603	103.517	121.008	238.866	0	238.866

Sez_progetto_n.E.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

23	2.43541	688.962	Unità A	1.6	26.5603	78.8288	92.1485	181.135	0	181.135
24	2.30038	465.93	Unità R	1.6	28.3516	53.3234	62.3335	112.551	0	112.551
25	2.30038	181.741	Unità R	1.6	28.3516	17.9789	21.0168	35.9833	0	35.9833

Global Minimum Query (spencer) - Safety Factor: 1.16634

Slice Number	Width [m]	Weight [kN]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]
1	2.45792	28.7614	Unità A	1.6	26.5603	15.664	18.2695	33.3459	0	33.3459
2	2.45792	82.1137	Unità A	1.6	26.5603	33.9392	39.5846	75.9851	0	75.9851
3	2.45792	127.411	Unità A	1.6	26.5603	45.1962	52.7141	102.249	0	102.249
4	2.45792	161.886	Unità A	1.6	26.5603	51.0352	59.5244	115.873	0	115.873
5	2.45792	185.223	Unità A	1.6	26.5603	52.9218	61.7248	120.275	0	120.275
6	2.45792	208.302	Unità A	1.6	26.5603	54.5622	63.6381	124.102	0	124.102
7	2.45792	228.173	Unità A	1.6	26.5603	55.2866	64.483	125.792	0	125.792
8	2.45792	246.051	Unità A	1.6	26.5603	55.5115	64.7453	126.317	0	126.317
9	2.45792	402.215	Unità A	1.6	26.5603	84.0218	97.998	192.836	0	192.836
10	2.45792	725.982	Unità A	1.6	26.5603	141.319	164.826	326.521	0	326.521
11	2.45792	1072.51	Unità A	1.6	26.5603	195.997	228.599	454.092	0	454.092
12	2.45792	1373.32	Unità A	1.6	26.5603	236.412	275.737	548.389	0	548.389
13	2.45792	1461.05	Unità A	1.6	26.5603	237.863	277.429	551.776	0	551.776
14	2.45792	1424.91	Unità A	1.6	26.5603	228.54	266.555	530.022	0	530.022
15	1.00719	571.939	Unità R	1.6	28.3516	260.641	303.996	560.401	0	560.401
16	2.43541	1356.22	Unità A	1.6	26.5603	202.607	236.309	469.517	0	469.517
17	2.43541	1302.64	Unità A	1.6	26.5603	183.57	214.105	425.098	0	425.098
18	2.43541	1238.03	Unità A	1.6	26.5603	164.125	191.425	379.728	0	379.728
19	2.43541	1162.66	Unità A	1.6	26.5603	144.388	168.406	333.681	0	333.681
20	2.43541	1074.57	Unità A	1.6	26.5603	124.237	144.903	286.666	0	286.666
21	2.43541	971.311	Unità A	1.6	26.5603	103.58	120.809	238.468	0	238.468
22	2.43541	845.612	Unità A	1.6	26.5603	81.9987	95.6384	188.116	0	188.116
23	2.43541	688.962	Unità A	1.6	26.5603	59.3301	69.1991	135.227	0	135.227
24	2.30038	465.93	Unità R	1.6	28.3516	38.2843	44.6525	79.7849	0	79.7849
25	2.30038	181.741	Unità R	1.6	28.3516	12.8741	15.0156	24.8617	0	24.8617

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.16828

Slice Number	Width [m]	Weight [kN]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]
1	2.45792	28.7614	Unità A	1.6	26.5603	8.62473	10.0761	16.9558	0	16.9558
2	2.45792	82.1137	Unità A	1.6	26.5603	22.8635	26.711	50.2323	0	50.2323
3	2.45792	127.411	Unità A	1.6	26.5603	36.6462	42.813	82.4432	0	82.4432
4	2.45792	161.886	Unità A	1.6	26.5603	48.0217	56.1028	109.028	0	109.028
5	2.45792	185.223	Unità A	1.6	26.5603	55.8314	65.2267	127.28	0	127.28
6	2.45792	208.302	Unità A	1.6	26.5603	62.1194	72.5728	141.975	0	141.975
7	2.45792	228.173	Unità A	1.6	26.5603	65.8847	76.9718	150.775	0	150.775
8	2.45792	246.051	Unità A	1.6	26.5603	67.3709	78.7081	154.249	0	154.249
9	2.45792	402.215	Unità A	1.6	26.5603	96.8912	113.196	223.238	0	223.238
10	2.45792	725.982	Unità A	1.6	26.5603	155.726	181.931	360.738	0	360.738
11	2.45792	1072.51	Unità A	1.6	26.5603	209.902	245.224	487.347	0	487.347

Sez_progetto_n.E.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

12	2.45792	1373.32	Unità A	1.6	26.5603	246.48	287.958	572.837	0	572.837
13	2.45792	1461.05	Unità A	1.6	26.5603	241.013	281.571	560.057	0	560.057
14	2.45792	1424.91	Unità A	1.6	26.5603	224.593	262.388	521.683	0	521.683
15	1.00719	571.939	Unità R	1.6	28.3516	267.371	312.364	575.907	0	575.907
16	2.43541	1356.22	Unità A	1.6	26.5603	189.924	221.884	440.661	0	440.661
17	2.43541	1302.64	Unità A	1.6	26.5603	168.018	196.292	389.466	0	389.466
18	2.43541	1238.03	Unità A	1.6	26.5603	148.15	173.081	343.034	0	343.034
19	2.43541	1162.66	Unità A	1.6	26.5603	130.184	152.091	301.046	0	301.046
20	2.43541	1074.57	Unità A	1.6	26.5603	113.556	132.665	262.186	0	262.186
21	2.43541	971.311	Unità A	1.6	26.5603	97.635	114.065	224.977	0	224.977
22	2.43541	845.612	Unità A	1.6	26.5603	81.3569	95.0476	186.934	0	186.934
23	2.43541	688.962	Unità A	1.6	26.5603	63.674	74.3891	145.609	0	145.609
24	2.30038	465.93	Unità R	1.6	28.3516	45.5594	53.2261	95.6736	0	95.6736
25	2.30038	181.741	Unità R	1.6	28.3516	16.5453	19.3296	32.8566	0	32.8566

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.16897

Slice Number	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
	[m]	[m]	[kN]	[kN]	[degrees]
1	-7.66616	967.002	0	0	0
2	-5.20824	965.9	36.1593	0	0
3	-2.75031	964.981	119.021	0	0
4	-0.292387	964.233	230.41	0	0
5	2.16554	963.646	354.431	0	0
6	4.62346	963.214	478.966	0	0
7	7.08139	962.932	601.321	0	0
8	9.53931	962.796	717.533	0	0
9	11.9972	962.806	824.9	0	0
10	14.4552	962.961	970.863	0	0
11	16.9131	963.263	1184.12	0	0
12	19.371	963.715	1429.3	0	0
13	21.8289	964.322	1656.27	0	0
14	24.2869	965.093	1806.76	0	0
15	26.7448	966.035	1867.85	0	0
16	27.752	966.474	2148.42	0	0
17	30.1874	967.671	2078.39	0	0
18	32.6228	969.075	1920.06	0	0
19	35.0582	970.712	1677.72	0	0
20	37.4936	972.619	1356.64	0	0
21	39.929	974.848	963.723	0	0
22	42.3645	977.477	508.43	0	0
23	44.7999	980.64	6.43962	0	0
24	47.2353	984.59	-515.556	0	0
25	49.5357	989.598	-955.049	0	0
26	51.836	998.435	0	0	0

Global Minimum Query (spencer) - Safety Factor: 1.16634

Slice Number	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
	[m]	[m]	[kN]	[kN]	[degrees]
1	-7.66616	967.002	0	0	0
2	-5.20824	965.9	75.2899	36.2976	25.7389
3	-2.75031	964.981	228.599	110.209	25.739
4	-0.292387	964.233	416.264	200.683	25.739
5	2.16554	963.646	609.774	293.975	25.7389
6	4.62346	963.214	791.917	381.786	25.7389
7	7.08139	962.932	961.165	463.382	25.7389
8	9.53931	962.796	1114.22	537.169	25.7389
9	11.9972	962.806	1249.55	602.412	25.7389
10	14.4552	962.961	1426.33	687.641	25.739
11	16.9131	963.263	1675.34	807.687	25.7389
12	19.371	963.715	1952.07	941.101	25.7389
13	21.8289	964.322	2200.37	1060.81	25.739
14	24.2869	965.093	2360.57	1138.04	25.7389
15	26.7448	966.035	2424.81	1169.01	25.7389
16	27.752	966.474	2709.24	1306.14	25.739
17	30.1874	967.671	2642.85	1274.13	25.7389
18	32.6228	969.075	2494.99	1202.85	25.739
19	35.0582	970.712	2274.8	1096.69	25.7389
20	37.4936	972.619	1992	960.353	25.7389
21	39.929	974.848	1657.6	799.134	25.7389
22	42.3645	977.477	1284.62	619.319	25.7388
23	44.7999	980.64	891.072	429.589	25.7389
24	47.2353	984.59	503.166	242.578	25.7389
25	49.5357	989.598	193.309	93.1953	25.739
26	51.836	998.435	0	0	0

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.16828

Slice	X	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[m]	[m]	[kN]	[kN]	[degrees]
1	-7.66616	967.002	0	0	0
2	-5.20824	965.9	39.9533	3.37075	4.82247
3	-2.75031	964.981	142.477	23.8387	9.49852
4	-0.292387	964.233	294.492	72.8722	13.8987
5	2.16554	963.646	476.834	154.219	17.9224
6	4.62346	963.214	669.462	263.74	21.5024
7	7.08139	962.932	862.68	394.992	24.6014
8	9.53931	962.796	1045.55	537.489	27.2065
9	11.9972	962.806	1210.14	679.662	29.3203
10	14.4552	962.961	1414.39	848.291	30.9535
11	16.9131	963.263	1689.34	1060.55	32.1202
12	19.371	963.715	1986.37	1281.73	32.8326
13	21.8289	964.322	2245.92	1464.07	33.0995
14	24.2869	965.093	2408.78	1559.79	32.9248

 Sez_progetto_n.E.slim
 STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01
 Sez_progetto_n.E.slim
 STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

15	26.7448	966.035	2472.39	1563.32	32.3056
16	27.752	966.474	2757.39	1717.79	31.9219
17	30.1874	967.671	2695.63	1599.03	30.6761
18	32.6228	969.075	2560.8	1417.69	28.9694
19	35.0582	970.712	2362.56	1192.84	26.7889
20	37.4936	972.619	2108.08	944.073	24.1245
21	39.929	974.848	1802.8	691.167	20.9761
22	42.3645	977.477	1451.33	453.692	17.3595
23	44.7999	980.64	1060.4	250.955	13.3147
24	47.2353	984.59	642.413	100.737	8.912
25	49.5357	989.598	269.97	21.3242	4.51626
26	51.836	998.435	0	0	0

List Of Coordinates

Line Load

 X
 Y

 51.8663
 998.436

 26.911
 997.793

 24.1823
 997.723

Line Load

 X
 Y

 96.8673
 1002

 81.7936
 1002

 56.4928
 1002

External Boundary

х	Y
114.98	1002
81.7936	1002
55.0444	1002
54.3509	1002
54.3509	998.5
26.911	997.793
20.8837	997.638
19.2723	988.5
17.7723	988.5
16.009	978.5
14.509	978.5
12.752	968.54
9.35161	967.978
7.87749	967.841
4.19003	967.5
-0.144766	967.5

-10.6139 966.807 -10.6139 959.307 -10.6139 951.807 114.98 951.807 114.98 991.978

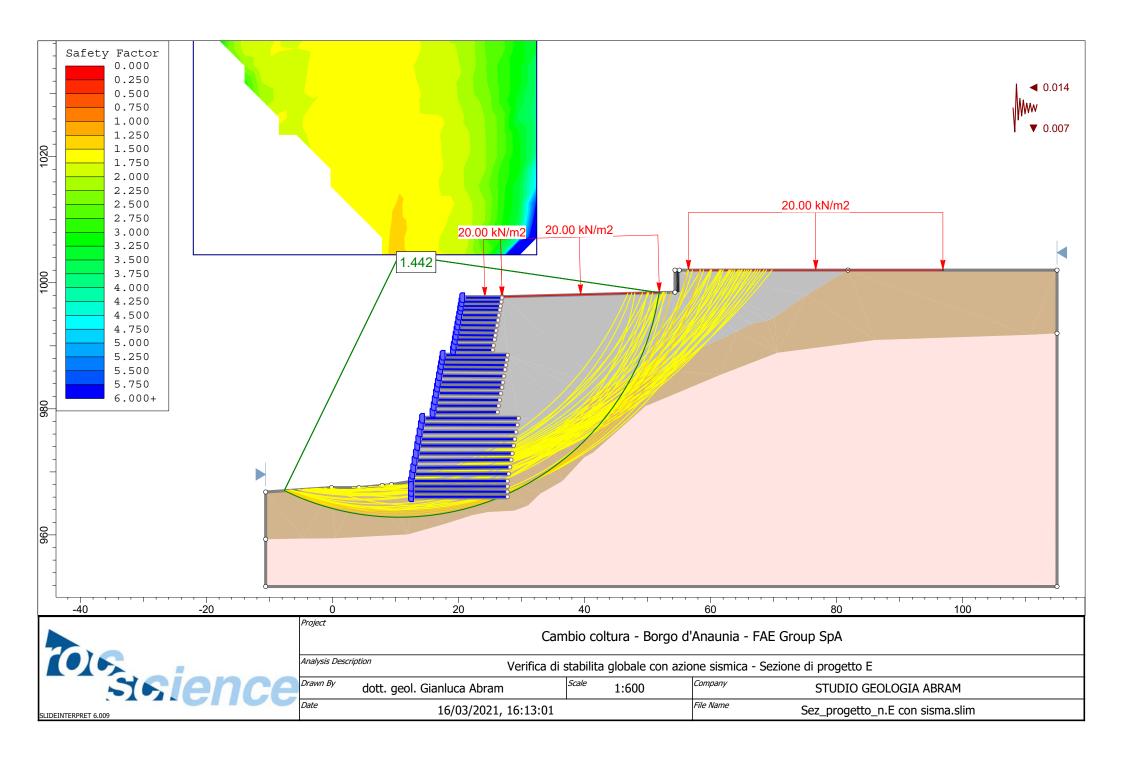
Material Boundary

х	Y
-10.6139	959.307
-4.669	959.41
0.372	959.445
11.974	960.067
17.878	961.758
22.126	963.105
24.681	963.623
28.799	963.834
31.025	964.656
32.9527	966.538
36.4471	968.521
39.9415	972.271
41.4052	973.102
49.6416	980.402
61.6846	985.448
70.5811	988.883
86.1001	990.922
110.711	991.741
114.98	991.978

Material Boundary

х	Y
12.752	968.54
12.7529	966.035
27.752	966.035
27.752	968.535
28.6705	973.745
29.509	978.5
26.009	978.5
27.7723	988.5
25.2723	988.5
26.911	997.793

Material Boundary


Х	Y
28.6705	973.745
34.5324	976.008

38.4287 978.62 41.1764 982.092 43.0807 983.5 48.2987 984.869 52.7394 986 57.9086 989.401 64.108 992.25 66.5347 993.503 68.8674 993.999 70.1451 994.5 75.2878 998.084 81.7936 1002

Material Boundary

Х	Υ
54.3509	998.5
55.059	998.492
55.0444	1002

Sez_progetto_n.E.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

Slide Analysis Information Cambio coltura - Borgo d'Anaunia - FAE Group SpA

Project Summary

File Name: Sez progetto n.E con sisma.slim

Slide Modeler Version: 6.009

Project Title: Cambio coltura - Borgo d'Anaunia - FAE Group SpA

Analysis: Verifica di stabilità globale con azione sismica - Sezione di progetto E

Author: dott. geol. Gianluca Abram Company: STUDIO GEOLOGIA ABRAM Date Created: 16/03/2021, 16:13:01

General Settings

Units of Measurement: Metric Units

Time Units: days

Permeability Units: meters/second Failure Direction: Right to Left

Data Output: Standard

Maximum Material Properties: 20 Maximum Support Properties: 20

Analysis Options

Analysis Methods Used

Bishop simplified
GLE/Morgenstern-Price with interslice force function: Half Sine
Spencer

Number of slices: 25 Tolerance: 0.005

Maximum number of iterations: 50

Check malpha < 0.2: Yes Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces Pore Fluid Unit Weight: 9.81 kN/m3 Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Search Method: Grid Search Radius Increment: 10 Composite Surfaces: Enabled

Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.014 Seismic Load Coefficient (Vertical): 0.007 2 Distributed Loads present

Distributed Load 1

Distribution: Constant Magnitude [kN/m2]: 20 Orientation: Normal to boundary

Distributed Load 2

Distribution: Constant Magnitude [kN/m2]: 20 Orientation: Normal to boundary

Material Properties

Property	Unità A	Unità S	Unità R	Muro cls
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Infinite strength
Unit Weight [kN/m3]	18.5	24	18	24
Cohesion [kPa]	2	261.165	2	
Friction Angle [deg]	32	47.6289	34	
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Support Properties

Geotessile

Support Type: GeoTextile Force Application: Active

Force Orientation: Bisector of Parallel and Tangent

Anchorage: Slope Face

Sez_progetto_n.E con sisma.slim

Shear Strength Model: Linear

Strip Coverage: 100 percent Tensile Strength: 300 kN/m Pullout Strength Adhesion: 5 kN/m2 Pullout Strength Friction Angle: 40 degrees

Global Minimums

Method: bishop simplified

FS: 1.442930

Center: 10.606, 1004.449

Radius: 41.667

Left Slip Surface Endpoint: -7.666, 967.002 Right Slip Surface Endpoint: 51.836, 998.435

Resisting Moment=470725 kN-m Driving Moment=326230 kN-m

Method: spencer

FS: 1.442190

Center: 10.606, 1004.449

Radius: 41.667

Left Slip Surface Endpoint: -7.666, 967.002 Right Slip Surface Endpoint: 51.836, 998.435

Resisting Moment=470486 kN-m Driving Moment=326230 kN-m Resisting Horizontal Force=9657.08 kN Driving Horizontal Force=6696.11 kN

Method: gle/morgenstern-price

FS: 1.444650

Center: 10.606, 1004.449

Radius: 41.667

Left Slip Surface Endpoint: -7.666, 967.002 Right Slip Surface Endpoint: 51.836, 998.435

Resisting Moment=471289 kN-m
Driving Moment=326230 kN-m
Resisting Horizontal Force=9661.83 kN
Driving Horizontal Force=6687.99 kN

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 2661 Number of Invalid Surfaces: 2190

Error Codes:

Error Code -99 reported for 202 surfaces Error Code -106 reported for 39 surfaces Error Code -107 reported for 1873 surfaces Error Code -108 reported for 1 surface Error Code -109 reported for 17 surfaces

Sez_progetto_n.E con sisma.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

Error Code -112 reported for 3 surfaces Error Code -1000 reported for 55 surfaces

Method: spencer

Number of Valid Surfaces: 2285 Number of Invalid Surfaces: 2566

Error Codes:

Error Code -99 reported for 202 surfaces
Error Code -106 reported for 39 surfaces
Error Code -107 reported for 1873 surfaces
Error Code -108 reported for 52 surfaces
Error Code -109 reported for 17 surfaces
Error Code -111 reported for 325 surfaces
Error Code -112 reported for 3 surfaces
Error Code -1000 reported for 55 surfaces

Method: gle/morgenstern-price

Number of Valid Surfaces: 2612 Number of Invalid Surfaces: 2239

Error Codes:

Error Code -99 reported for 202 surfaces
Error Code -106 reported for 39 surfaces
Error Code -107 reported for 1873 surfaces
Error Code -108 reported for 42 surfaces
Error Code -109 reported for 17 surfaces
Error Code -111 reported for 8 surfaces
Error Code -112 reported for 3 surfaces
Error Code -11000 reported for 55 surfaces

Error Codes

The following errors were encountered during the computation:

- -99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.
- -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.
- -107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.
- -108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).
- -109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.
- -111 = safety factor equation did not converge
- -112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.
- -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Sez_progetto_n.E con sisma.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

Global Minimum Query (bishop simplified) - Safety Factor: 1.44293

Slice	Width	Weight	Base	Base Cohesion	Base Friction Angle	Shear Stress	Shear Strength	Base Normal Stress	Pore Pressure	Effective Normal Stress
Number	[m]	[kN]	Material	[kPa]	[degrees]	[kPa]	[kPa]	[kPa]	[kPa]	[kPa]
1	2.45792	28.7614	Unità A	2	32	8.0514	11.6176	15.3914	0	15.3914
2	2.45792	82.1137	Unità A	2	32	19.0338	27.4645	40.7518	0	40.7518
3	2.45792	127.411	Unità A	2	32	27.6301	39.8683	60.6019	0	60.6019
4	2.45792	161.886	Unità A	2	32	33.5754	48.447	74.3306	0	74.3306
5	2.45792	185.223	Unità A	2	32	37.068	53.4865	82.3957	0	82.3957
6	2.45792	208.302	Unità A	2	32	40.3486	58.2202	89.9713	0	89.9713
7	2.45792	228.173	Unità A	2	32	42.8931	61.8917	95.8469	0	95.8469
8	2.45792	246.051	Unità A	2	32	44.9647	64.8809	100.63	0	100.63
9	2.45792	402.215	Unità A	2	32	70.8156	102.182	160.325	0	160.325
10	2.45792	725.982	Unità A	2	32	123.619	178.374	282.258	0	282.258
11	2.45792	1072.51	Unità A	2	32	177.537	256.174	406.765	0	406.765
12	2.45792	1373.32	Unità A	2	32	221.365	319.414	507.969	0	507.969
13	2.45792	1461.05	Unità A	2	32	229.82	331.614	527.492	0	527.492
14	2.45792	1424.91	Unità A	2	32	225.454	325.314	517.41	0	517.41
15	1.00719	571.939	Unità R	2	34	207.424	299.298	440.762	0	440.762
16	2.43541	1356.22	Unità A	2	32	208.558	300.934	478.395	0	478.395
17	2.43541	1302.64	Unità A	2	32	194.725	280.974	446.452	0	446.452
18	2.43541	1238.03	Unità A	2	32	179.508	259.017	411.312	0	411.312
19	2.43541	1162.66	Unità A	2	32	163.009	235.21	373.213	0	373.213
20	2.43541	1074.57	Unità A	2	32	145.039	209.281	331.719	0	331.719
21	2.43541	971.311	Unità A	2	32	125.393	180.934	286.353	0	286.353
22	2.43541	845.612	Unità A	2	32	103.374	149.161	235.507	0	235.507
23	2.43541	688.962	Unità A	2	32	78.3988	113.124	177.835	0	177.835
24	2.30038	465.93	Unità R	2	34	52.6011	75.8997	109.561	0	109.561
25	2.30038	181.741	Unità R	2	34	17.1513	24.7481	33.7254	0	33.7254

Global Minimum Query (spencer) - Safety Factor: 1.44219

Slice Number	Width [m]	Weight [kN]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]
1	2.45792	28.7614	Unità A	2	32	17.0929	24.6512	36.2494	0	36.2494
2	2.45792	82.1137	Unità A	2	32	36.519	52.6673	81.0844	0	81.0844
3	2.45792	127.411	Unità A	2	32	48.0743	69.3323	107.754	0	107.754
4	2.45792	161.886	Unità A	2	32	53.7953	77.5831	120.958	0	120.958
5	2.45792	185.223	Unità A	2	32	55.3808	79.8696	124.617	0	124.617
6	2.45792	208.302	Unità A	2	32	56.7599	81.8585	127.8	0	127.8
7	2.45792	228.173	Unità A	2	32	57.2286	82.5345	128.882	0	128.882
8	2.45792	246.051	Unità A	2	32	57.2182	82.5195	128.858	0	128.858
9	2.45792	402.215	Unità A	2	32	86.2834	124.437	195.94	0	195.94
10	2.45792	725.982	Unità A	2	32	144.642	208.601	330.631	0	330.631
11	2.45792	1072.51	Unità A	2	32	200.003	288.443	458.406	0	458.406
12	2.45792	1373.32	Unità A	2	32	240.584	346.968	552.066	0	552.066
13	2.45792	1461.05	Unità A	2	32	241.342	348.061	553.814	0	553.814
14	2.45792	1424.91	Unità A	2	32	229.129	330.448	525.627	0	525.627

Sez_progetto_n.E con sisma.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

15	1.00719	571.939	Unità R	2	34	267.74	386.132	569.499	0	569.499
16	2.43541	1356.22	Unità A	2	32	202.405	291.906	463.949	0	463.949
17	2.43541	1302.64	Unità A	2	32	182.916	263.799	418.966	0	418.966
18	2.43541	1238.03	Unità A	2	32	163.103	235.225	373.237	0	373.237
19	2.43541	1162.66	Unità A	2	32	143.082	206.351	327.031	0	327.031
20	2.43541	1074.57	Unità A	2	32	122.729	176.999	280.057	0	280.057
21	2.43541	971.311	Unità A	2	32	101.957	147.041	232.114	0	232.114
22	2.43541	845.612	Unità A	2	32	80.359	115.893	182.267	0	182.267
23	2.43541	688.962	Unità A	2	32	57.7972	83.3545	130.194	0	130.194
24	2.30038	465.93	Unità R	2	34	36.963	53.3077	76.0668	0	76.0668
25	2.30038	181.741	Unità R	2	34	12.0175	17.3315	22.7298	0	22.7298

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.44465

Slice Number	Width [m]	Weight [kN]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]
1	2.45792	28.7614	Unità A	2	32	8.80892	12.7258	17.1648	0	17.1648
2	2.45792	82.1137	Unità A	2	32	23.5042	33.9553	51.1393	0	51.1393
3	2.45792	127.411	Unità A	2	32	38.0629	54.9875	84.7976	0	84.7976
4	2.45792	161.886	Unità A	2	32	50.4821	72.929	113.51	0	113.51
5	2.45792	185.223	Unità A	2	32	59.3124	85.6857	133.925	0	133.925
6	2.45792	208.302	Unità A	2	32	66.3537	95.8579	150.204	0	150.204
7	2.45792	228.173	Unità A	2	32	70.3658	101.654	159.479	0	159.479
8	2.45792	246.051	Unità A	2	32	71.5606	103.38	162.242	0	162.242
9	2.45792	402.215	Unità A	2	32	101.114	146.074	230.567	0	230.567
10	2.45792	725.982	Unità A	2	32	160.084	231.265	366.9	0	366.9
11	2.45792	1072.51	Unità A	2	32	213.825	308.903	491.149	0	491.149
12	2.45792	1373.32	Unità A	2	32	249.665	360.678	574.006	0	574.006
13	2.45792	1461.05	Unità A	2	32	243.226	351.377	559.122	0	559.122
14	2.45792	1424.91	Unità A	2	32	224.075	323.71	514.842	0	514.842
15	1.00719	571.939	Unità R	2	34	273.954	395.768	583.785	0	583.785
16	2.43541	1356.22	Unità A	2	32	188.953	272.971	433.645	0	433.645
17	2.43541	1302.64	Unità A	2	32	166.809	240.981	382.451	0	382.451
18	2.43541	1238.03	Unità A	2	32	146.659	211.871	335.864	0	335.864
19	2.43541	1162.66	Unità A	2	32	128.434	185.542	293.728	0	293.728
20	2.43541	1074.57	Unità A	2	32	111.679	161.337	254.993	0	254.993
21	2.43541	971.311	Unità A	2	32	95.8405	138.456	218.376	0	218.376
22	2.43541	845.612	Unità A	2	32	79.8449	115.348	181.395	0	181.395
23	2.43541	688.962	Unità A	2	32	62.5303	90.3344	141.365	0	141.365
24	2.30038	465.93	Unità R	2	34	44.653	64.508	92.672	0	92.672
25	2.30038	181.741	Unità R	2	34	15.7487	22.7514	30.7653	0	30.7653

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.44293

	Slice	Х	Y	Interslice	Interslice	Interslice
	Number	coordinate [m]	coordinate - Bottom	Normal Force [kN]	Shear Force [kN]	Force Angle [degrees]
		[,,,]	[iii]	[KIV]	[KIV]	[uegrees]

Sez_progetto_n.E con sisma.slim STUDIO GEOLOGIA ABRAM 16/03/2021, 16:13:01

1	-7.66616	967.002	0	0	0
2	-5.20824	965.9	36.3372	0	0
3	-2.75031	964.981	119.38	0	0
4	-0.292387	964.233	230.786	0	0
5	2.16554	963.646	354.579	0	0
6	4.62346	963.214	478.618	0	0
7	7.08139	962.932	600.191	0	0
8	9.53931	962.796	715.332	0	0
9	11.9972	962.806	821.342	0	0
10	14.4552	962.961	964.771	0	0
11	16.9131	963.263	1172.95	0	0
12	19.371	963.715	1409.96	0	0
13	21.8289	964.322	1625.71	0	0
14	24.2869	965.093	1763.43	0	0
15	26.7448	966.035	1810.75	0	0
16	27.752	966.474	2112.24	0	0
17	30.1874	967.671	2029.55	0	0
18	32.6228	969.075	1859.51	0	0
19	35.0582	970.712	1606.67	0	0
20	37.4936	972.619	1276.57	0	0
21	39.929	974.848	876.473	0	0
22	42.3645	977.477	416.271	0	0
23	44.7999	980.64	-87.701	0	0
24	47.2353	984.59	-607.765	0	0
25	49.5357	989.598	-1040.84	0	0
26	51.836	998.435	0	0	0
•					

Global Minimum Query (spencer) - Safety Factor: 1.44219

Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	-7.66616	967.002	0	0	0
2	-5.20824	965.9	81.5975	41.84	27.147
3	-2.75031	964.981	244.778	125.512	27.1469
4	-0.292387	964.233	441.841	226.559	27.147
5	2.16554	963.646	642.84	329.623	27.147
6	4.62346	963.214	830.297	425.744	27.147
7	7.08139	962.932	1003.06	514.33	27.147
8	9.53931	962.796	1158.1	593.827	27.1469
9	11.9972	962.806	1294.14	663.583	27.1469
10	14.4552	962.961	1470.35	753.936	27.1469
11	16.9131	963.263	1716.07	879.935	27.147
12	19.371	963.715	1985.63	1018.15	27.1469
13	21.8289	964.322	2222.66	1139.69	27.1469
14	24.2869	965.093	2369.3	1214.88	27.1469
15	26.7448	966.035	2418.74	1240.23	27.1469
16	27.752	966.474	2724.83	1397.18	27.1469
17	30.1874	967.671	2645.18	1356.35	27.1471
18	32.6228	969.075	2485.67	1274.55	27.1469

19	35.0582	970.712	2255.85	1156.71	27.1469
20	37.4936	972.619	1965.86	1008.01	27.1468
21	39.929	974.848	1627.04	834.285	27.147
22	42.3645	977.477	1252.81	642.392	27.147
23	44.7999	980.64	861.529	441.759	27.147
24	47.2353	984.59	479.724	245.984	27.147
25	49.5357	989.598	178.555	91.5561	27.147
26	51.836	998.435	0	0	0

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.44465

Slice	Х	Υ	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[m]	[m]	[kN]	[kN]	[degrees]
1	-7.66616	967.002	0	0	0
2	-5.20824	965.9	40.193	3.50728	4.98705
3	-2.75031	964.981	143.868	24.897	9.81805
4	-0.292387	964.233	299.171	76.5691	14.356
5	2.16554	963.646	487.7	163.144	18.496
6	4.62346	963.214	688.904	280.708	22.1694
7	7.08139	962.932	891.651	422.26	25.3409
8	9.53931	962.796	1083.21	575.953	28
9	11.9972	962.806	1254.27	728.61	30.1525
10	14.4552	962.961	1461.69	906.724	31.8124
11	16.9131	963.263	1734.59	1126.3	32.9964
12	19.371	963.715	2023.54	1350.49	33.7187
13	21.8289	964.322	2269.81	1530.4	33.9895
14	24.2869	965.093	2417.22	1618.93	33.8121
15	26.7448	966.035	2464.6	1611.84	33.1845
16	27.752	966.474	2770.79	1785.34	32.7954
17	30.1874	967.671	2694.8	1653.36	31.5307
18	32.6228	969.075	2547.47	1458.68	29.7954
19	35.0582	970.712	2338.92	1221.41	27.5741
20	37.4936	972.619	2076.86	961.992	24.8534
21	39.929	974.848	1767.08	700.706	21.63
22	42.3645	977.477	1414.15	457.232	17.9174
23	44.7999	980.64	1024.45	250.763	13.7543
24	47.2353	984.59	610.118	98.9545	9.21253
25	49.5357	989.598	243.538	19.8961	4.67047
26	51.836	998.435	0	0	0

List Of Coordinates

Line Load

х	Υ
51.8663	998.436
26.911	997.793
24.1823	997.723

Line Load

XY96.8673100281.7936100256.49281002

External Boundary

Х	Y
114.98	1002
81.7936	1002
55.0444	1002
54.3509	1002
54.3509	998.5
26.911	997.793
20.8837	997.638
19.2723	988.5
17.7723	988.5
16.009	978.5
14.509	978.5
12.752	968.54
9.35161	967.978
7.87749	967.841
4.19003	967.5
-0.144766	967.5
-10.6139	966.807
-10.6139	959.307
-10.6139	951.807
114.98	951.807
114.98	991.978

Material Boundary

X Y
-10.6139 959.307
-4.669 959.41
0.372 959.445
11.974 960.067
17.878 961.758
22.126 963.105
24.681 963.623
28.799 963.834
31.025 964.656
32.9527 966.538
36.4471 968.521
39.9415 972.271

41.4052 973.102 49.6416 980.402 61.6846 985.448 70.5811 988.883 86.1001 990.922 110.711 991.741 114.98 991.978

Material Boundary

х	Υ
12.752	968.54
12.7529	966.035
27.752	966.035
27.752	968.535
28.6705	973.745
29.509	978.5
26.009	978.5
27.7723	988.5
25.2723	988.5
26.911	997.793

Material Boundary

х	Υ
28.6705	973.745
34.5324	976.008
38.4287	978.62
41.1764	982.092
43.0807	983.5
48.2987	984.869
52.7394	986
57.9086	989.401
64.108	992.25
66.5347	993.503
68.8674	993.999
70.1451	994.5
75.2878	998.084
81.7936	1002

Material Boundary

X	Υ
54.3509	998.5
55.059	998.492
55.0444	1002